
UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Big Questions

How do you program apps to respond to user
"events"?
How do you write programs to make decisions?
How do programs keep track of information?
How creative is programming?
How do people develop, test, and debug
programs?

Enduring Understandings

1.1 Creative development can be an essential
process for creating computational artifacts.
1.2 Computing enables people to use creative
development processes to create computational
artifacts for creative expression or to solve a
problem.
1.3 Computing can extend traditional forms of
human expression and experience.
2.2 Multiple levels of abstraction are used to write
programs or create other computational artifacts
4.1 Algorithms are precise sequences of
instructions for processes that can be executed by
a computer and are implemented using
programming languages.
5.1 Programs can be developed for creative
expression, to satisfy personal curiosity, to create
new knowledge, or to solve problems (to help
people, organizations, or society).
5.2 People write programs to execute algorithms.
5.3 Programming is facilitated by appropriate
abstractions.
5.4 Programs are developed, maintained, and used
by people for different purposes.
5.5 Programming uses mathematical and logical
concepts.
7.1 Computing enhances communication,
interaction, and cognition.

Unit 5 - Building Apps
This unit continues to develop students’ ability to program in the JavaScript language, using Code.org’s App Lab
environment to create a series of small applications (apps) that live on the web, each highlighting a core concept of
programming. In this unit students transition to creating event-driven apps. The unit assumes that students have
learned the concepts and skills from Unit 3, namely: writing and using functions, using simple repeat loops, being able
to read documentation, collaborating, and using the Code Studio environment with App Lab.

Chapter 1: Event-Driven Programming

Week 1

file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/
file:///csp-1718/unit5/

Lesson 1: Introduction to Event-Driven Programming
Students are introduced to Design Mode in App Lab, which allows students to easily design
the User Interface (UI) of their apps and add simple event handlers to create a simple game.

Lesson 2: Multi-Screen Apps
Students improve the chaser game by learning how to add multiple “screens” to an app and by
adding code to switch between them. Students learn to use console.log to display simple
messages for debugging purposes.

Lesson 3: Building an App: Multi-Screen App
Students design and create a 4-screen app on a topic of their choosing. Students may
collaborate with a classmate as a "thought partner," similar to the recommendation for the
Create Performance Task.

Week 2

Lesson 4: Controlling Memory with Variables
Students learn to create and assign values to variables and are navigated through common
misconceptions.

Lesson 5: Building an App: Clicker Game
Students learn about global versus local variables, and use variables to track the score in a
simple game.

Lesson 6: User Input and Strings
Students develop a simple Mad Libs® app, learning to collect and process text strings as input
from the user.

Week 3

Lesson 7: If-statements unplugged
Students trace simple robot programs on paper to develop a sense of how to read and reason
about code with if statements in it. The code is the same pseudocode used on the AP exam.

Lesson 8: Boolean Expressions and "if" Statements
Students learn how to write and use if statements in JavaScript by debugging common
problems, solving simple problems, or adding conditional logic into an existing app or game.

Week 4

Lesson 9: "if-else-if" and Conditional Logic
Students are introduced to the boolean (logic) operators NOT, AND, and OR as well as the if-
else-if construct as tools for creating compound boolean conditions in if statements.

Lesson 10: Building an App: Color Sleuth
Programming | Conditionals | App Lab

Students follow an imaginary conversation between two characters, Alexis and Michael, as
they solve problems and make design decisions in the multiple steps required to construct the
"Color Sleuth" App. Students must implement elements of the code along the way.

Chapter Commentary
Unit 5 Chapter 1 - What’s the story?
This chapter establishes the basic story of “What’s an app?” The first week is dedicated to introducing App Lab’s
design mode , and becoming familiar with the event-driven mindset for programming. The largest difference
between this unit and previous programming unit (unit 3) is the the event-driven paradigm for programming. In Unit
3 (turtle programming) everything was procedural: you click “run” on the program and it starts executing from the first
line of code, and runs until completion. An event-driven program never ends! It is constantly waiting to react to user
input like clicking a button, or moving your mouse. You write programs by deciding which events you want to respond
to and by writing a discrete function to respond to that specific event. As part of its execution that function may run
some loops, perform calculations, call other functions, and so on.

Next we cover variables, user input (including text strings), Boolean expressions and if-statements . It’s
quite a blitz through a gamut of fundamental programming concepts. The story to tell is that these concepts are
behind features of apps that you are familiar with. Want to keep score in a game? Variables. Want to respond to
something the user types? Text input. Want your app to exhibit different behaviors based on certain conditions?
Boolean expressions and if-statements. The Color Sleuth game/app is an important culminating project that ties
together all the concepts learned in this chapter. It is a unique lesson in which the student follows a conversation
between two fictional students collaborating to plan, design and write the code for their project. The student follows
along in and writes the code to match the plans of the fictional students.

Ready for the Create PT?

We think that the end of this chapter represents a minimum point at which students could complete a successful
Create performance task. Check out the Performance Task pacing section on page 32 for more details.

Our Approach to the Content
Our approach to teaching these concepts is somewhat “traditional” in terms of the sequence of concepts and how they
build on each other. If you study the lessons you will notice a rough pattern to how we scaffold the learning for each
concept which is typically as follows. (1) Introduce the concept in an unplugged or discussion-based way to activate
prior knowledge and motivate the students’ need to learn the concept. (2) Learn about and practice the code related to
that concept. Students read about and work through a series of exercises, which they can do in pairs or solo, to
practice using any new code related to the concept, as well as solving and debugging a few problems. (3) Follow a
Building an App lesson, which walks students through the construction of an app from scratch. In the lesson students
progressively build parts of it, and submit a final version. These apps allow room for some student creativity and
indeed students should be encouraged to “make it their own” while still using the underlying concepts.

The concepts covered in this chapter, especially variables, conditional logic and if-statements carry a lot of classic
misconceptions. Our lessons often try to lead students into those misconceptions by asking them to debug or
problem-solve around them. This means that there is a risk for some students becoming frustrated or confused by
these lessons. We’ve tried to provide a number of supports and resources you might use to help clear up confusion.
One key resource is the video related to each concept. The videos are dense enough that we recommend you use
them to sense-make after students have been through a programming experience, as well as before. Another
resource to be aware of would be the “maps”, which are static pages that explain the code for a concept and contain
diagrams with other helpful information that are meant to serve as a reference and an introduction to the concept in
the first place.

Big Questions

How are real world phenomena modeled and
simulated on a computer?
How do you write programs to store and retrieve
lots of information?
What are "data structures" in a program and when
do you need them?
How are algorithms evaluated for "speed"?

Enduring Understandings

2.3 Models and simulations use abstraction to
generate new understanding and knowledge.
3.1 People use computer programs to process
information to gain insight and knowledge.
4.1 Algorithms are precise sequences of
instructions for processes that can be executed by
a computer and are implemented using
programming languages.
5.1 Programs can be developed for creative
expression, to satisfy personal curiosity, to create
new knowledge, or to solve problems (to help
people, organizations, or society).

Chapter 2: Programming with Data
Structures

Week 5

Lesson 11: While Loops
Students are introduced to the "while loop" construct by first analyzing a flow chart and then by
completing a series of exercises in Code Studio. The "while loop" repeats a block of code
based on a boolean condition.

Lesson 12: Loops and Simulations
Students make a simple computer simulation to model a coin flipping experiment that is
possible, but unreasonable, to do by hand. Students write code that uses while loops to
repeatedly "flip coins" (random number 0 or 1) until certain conditions are met.

Lesson 13: Introduction to Arrays
Students learn about arrays in JavaScript as a means of storing lists of information within a
program. Students build a simple app, My Favorite Things, which stores and cycles through a
list of words describing their favorite things.

Week 6

Lesson 14: Building an App: Image Scroller
Students extend the My Favorite Things app to manage and display a collection of images
instead of words. Students also learn to make the program respond to keys (left and right
arrow) by using the "event" parameter that is created when an event is triggered.

Lesson 15: Processing Arrays
Unplugged | App Lab

In this is long lesson, students learn to use for loops to process lists (arrays) of data in a
variety of ways to accomplish various tasks like searching for a particular value, or finding the
smallest value in a list. Students also reason about linear vs. binary search.

Lesson 16: Functions with Return Values
Students learn to write functions that calculate and return values, first through an unplugged
activity by playing Go Fish, then by practicing in Code Studio, and finally by writing functions
that return values in a simple turtle driver app.

Week 7

Lesson 17: Building an App: Canvas Painter
Canvas Painter is a culminating project brings together processing arrays, functions with
return values, and handling keystroke events. The app allows a user to draw an image while
recording in an array every single x,y location the mouse passes over on the canvas. By
processing this array in different ways, the image can be redrawn in different styles, like
random, spray paint, and sketching.

Lesson 18: Practice PT - Create Your Own App
Students design an app based off of one they have previously worked on in the programming
unit. Students choose the kinds of improvements they wish to make and write responses to
reflection questions similar to those they will see on the AP® Create Performance Task.

Chapter Commentary
Unit 5 Chapter 2 - What’s the story?
This chapter tells the story of the real power of computers, which is to quickly and precisely perform many of
computations on data to produce a result. There are two pieces to this puzzle. (1) We need to better understand how
to control iteration (loops) beyond a simple repeat loop. (2) We need to be able to store and process lists of data
rather than single variables.

Knowledge and facility with loops and lists opens an almost infinite number of doors to different types of programs you
can write and problems you can solve. The projects and examples in this chapter merely scratch the surface of what’s
possible. List processing is a core pattern for much of computation. The point in these lessons is for students to see
the pattern in action a few times to get the gist.

For example, in computer science, writing computer programs to model and simulate real world events is a hugely
important topic. The idea of using randomness or random sampling over a large number of trials to obtain a numerical
result is a foundational practice in computing. We address it briefly here with the coin flipping experiment, in which
students write a program to model flipping a coin repeatedly while keeping track of the results in various ways. This
type of method is broadly known as the “Monte Carlo method” and could be used in any situation to determine the
probabilities of certain outcomes. Monte Carlo methods have been used to model drivers’ behavior in traffic, the flow
of multiple fluids, business risk models, and so on.

Our Approach to the Content
The teaching patterns for this chapter are similar to prior lessons in Unit 5 -- (1) introduce and motivate the concept,
(2) do some skill-building and practice with the code related to that concept, (3) complete a project.

We want to encourage students to continue working with a partner or “programming buddy” - a person that they can
check their work with, clarify instructions, etc. The model we suggest is two students sitting side by side, one with the
instructions up on her screen, while the other writes code on hers. Since the projects are usually individual and
creative, there is no risk in students helping each other along the way.

Even though the coin flipping experiment seems simplistic, it has the same root elements of more sophisticated
models. The main takeaway for students should be this: when some computation is too long or complicated to do by
hand with mathematics, if you can think of how to represent or model the thing using the tools of programming such

as variables, loops, and conditions (lists), then you can run a simulation a million times to approximate a result.

It’s also worth pointing out a deliberate connection between processing arrays in this chapter and the “Human
Machine Language” problems students worked on in Unit 3, where they designed algorithms and programs to
process a list of playing cards. You can appeal to some of those exercises in this work here. There are numerous
aspects to using lists, and the concept takes some time to sink in. Doing a linear pass over an array (a loop that starts
at the front of a list and does something to or with each element one at a time until it reaches the end) is the most
sophisticated programming technique students will encounter in the course and be expected to reason about in an
exam situation.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 1: Introduction to Event-Driven
Programming
Overview
Students will be introduced to a new feature of App Lab: Design
Mode. Design Mode allows students to easily design the User
Interface (UI) of their apps using a drag-and-drop editor. Students
learn how to create UI elements they have seen before such as
images, text labels and buttons, but they will see many more
options for styling these elements with colors, font sizes and so on.
Students also learn how to add event handlers - code that listens
for and responds to user-events. Students also explore some
common errors that come up in event-driven programming and will
learn some important skills for debugging programs, chief among
them being responding to error messages. Students end the
lesson by creating the foundation of a simple "chaser game" which
they will add onto in the next lesson.

Purpose
Most modern applications are interactive, responding to when
users click buttons, type in a textbox, tilt the screen, swipe
between screens, etc. In every instance, the user’s action is
generating some kind of event and the program responds by
running an associated block of code. Programming a modern
application is therefore typically an exercise in creating a user
interface and then defining what will happen when the user
interacts with that interface.

The "event-driven" mindset of programming can take a little getting
used to. Often when learning, you write sequential programs that
run from start (usually the first line of the program) to the end, or to
some point when the program terminates. In an event-driven
program your code must always be at the ready to respond to user
events, like clicking a button, that may happen at any time, or not
at all. More complex event-driven programs require interplay and
coordination between so-called "event handlers" - which are
functions the programmer writes, but are triggered by the system
in response to certain events.

This lesson is a first step toward getting into this mindset. Certain
high-level programming languages and environments are
designed to make certain tasks easier for a programmer. Being
able to design the user interface for an app using a drag-and-drop
editor makes designing a stylish product much faster and easier.

Objectives
Students will be able to:

Use Design Mode to user interface (UI)
elements to a screen.
Create a simple event-driven program by
creating user-interface elements with
unique IDs and attaching event handlers to
them.
Recognize debugging and responding to
error messages as an important step in
developing a program.
Debug simple issues related to event-driven
programming

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Tutorial - Introduction to Design
Mode - Video (download)
Unit 5 on Code Studio

Vocabulary
Callback function - a function specified
as part of an event listener; it is written by
the programmer but called by the system
as the result of an event trigger.
Event - An action that causes something to
happen.
Event-driven program - a program
designed to run blocks of code or functions
in response to specified events (e.g. a
mouse click)
Event handling - an overarching term for
the coding tasks involved in making a
program respond to events by triggering
functions.
Event listener - a command that can be
set up to trigger a function when a particular

https://youtu.be/-EoTeD4mSNU
http://videos.code.org/2015/csp/applab/design.mp4
https://studio.code.org/s/csp5

App Lab has a way to make the User Interface elements quickly
and easily, leaving your brain more free to think about how to write
the event handlers.

Agenda
Getting Started (10 Minutes)

What events do familiar apps use to be interactive?

Activity (45 Minutes)
Wrap-up (10 Minutes)

Share chaser games

type of event occurs on a particular UI
element.
UI Elements - on-screen objects, like
buttons, images, text boxes, pull down
menus, screens and so on.
User Interface - The visual elements of a
program through which a user controls or
communicates with the application. Often
abbreviated UI.

Introduced Code
onEvent(id, type, function(event)){ ... }

setPosition(id, x, y, width, height)

setSize(id, width, height)

file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/setPosition/
file://docs.code.org/applab/setSize/

 Discussion
Goal

Begin the transition to events and event-driven
programming by building on existing knowledge of
elements and behaviors that are common to most
modern applications.

 Teaching Tip

Technical knowledge of how modern applications work
is not necessary to run this discussion, and the
conversation itself should avoid being overly technical.
For now, the point is to get the language of "events"
out in the open.

Apps have elements on the screen that you can
interact with (i.e. cause user-generated events)
Apps respond to these events in various ways.

You want to be on the lookout for types of events we
can program with like: mouse click or movement, typing
keys on the keyboard, etc. in combination with types
of screen elements you can perform those actions
on like: buttons, menus, text fields, images, etc.

Teaching Guide
Getting Started (10 Minutes)

What events do familiar apps use to be interactive?
Prompt:

Take out a piece of paper or journal
Draw a rectangle representing the screen of a
mobile device
Take one minute to sketch out what a screen in
your favorite app looks like

Give students a minute to sketch

Now make a quick list of everything on that screen that you can interact with as a user.
Finally, write down one action-and-reaction of the app: one thing you do, and how the app responds.

Discussion:

Allow students an opportunity to share their
sketches and lists with their classmates before
asking a few students to share with the entire class.

Ask students to share their lists of screen elements
and how apps respond.

Likely events will include things like:

clicking a button
swiping a screen
dragging your finger
tilting a phone
pressing a key, etc.

Modern apps are interactive because they can
respond to this and other forms of user input (i.e.,
human-generated events).

 Remarks

We may not understand all the technical details yet, but it seems clear that most applications we use respond to
events of some kind.

Whether we’re clicking a button or pressing a key, the computer is sensing events that we generate in order to
determine how the application should run.

Today, we’re going to start exploring how event-driven programming makes this possible.

Activity (45 Minutes)

 Transition to Code Studio:

 Code Studio levels

Unit 5 Lesson 1 Introduction Student Overview

View on Code
Studio

You might consider skipping this video (and coming back to it later) in the interest of
time.

Students should see it at some point but it is not essential to understanding or completing this
lesson.
The video provides a general overview of the purpose of Design Mode and a little behind-the-scenes detail
of what it's doing.
You may want to watch or show this video AFTER the lesson to tie things together.
You may want to ask students to watch it outside of class.

Introduction to Design Mode Teacher Overview Student Overview

Levels 3 4 (click tabs to see student view)

How onEvent Works Student Overview

Levels 6 7 (click tabs to see student view)

View on Code
StudioTeaching Tips

Key Idea:

There is a pattern to how these programs are constructed and developed in App Lab.

Key Behavior:

Setting up the expectation that programs don't work on the first try. The Run-Test-Debug cycle is part of
programming practice. As you get better you learn to write a small amount of code, verify that it works and
then move on.

You can do a lot as a teacher to model this expectation. We call it acting as the "lead learner" in the
classroom. In the face of some problem or uncertainty, rather teacher-as-source-of-all-knowledge you
model the behavior of a good learner, who says "I don't know, but with some effort and attention to detail,
together, I'm sure we can find out."

Event-Driven Programming Patterns Teacher Overview

Student Overview

Rules About Choosing Good IDs Student Overview

Levels 10 11 (click tabs to see student view)

Intro to Debugging and Common Problems Teacher Overview

Student Overview

https://studio.code.org/s/csp5/stage/1/puzzle/2
https://studio.code.org/s/csp5/stage/1/puzzle/8

 Try This

View on Code
StudioTeaching Tips

You may want to pause at this point to go over and provide encouragement related to:

1. Key Behavior and Attitude about Debugging
2. Common Types of Errors

Here's an off-the-wall metaphor you might
consider trying with your students: programming
and debugging is like getting dressed up to
go out. (stay with me).

You put on some clothes that you think will look good but then you have to look in the mirror, make some
adjustments and decisions, maybe even realize you need to go a different direction entirely, and so on --
you are debugging your outfit.

Writing a program is initially is like throwing on some clothes, and running the program is like looking in the
mirror for the first time. You do it to see what it looks like, knowing that you're going to have to make some
adjustments.

But looking in the mirror frequently to see what everything looks like together actually speeds up the
process. Getting ready to go out, putting on makeup or combing your hair without looking in the mirror
would not only slow things down, it's foolish.

The Run. Test. Debug. pattern of behavior is part of the programming process, just like using a mirror is
part of making yourself presentable.

Understanding that debugging is part of the problem solving process is a key understanding and
behavior we want to see from students. Many early programmers express frustration when code they write
doesn't work the first time, or report that the "computer hates me!". Or that if they write a program that doesn't
work or has problems that they are "dumb" or that they'll never get it. This is exactly the wrong attitude
to have.

Writing a program is not like solving some big problem with blinders on and then checking at the end to see if
you were right. It's a process of writing and making adjustments.

Common Types of Errors

You might point out to students that:

Syntax Errors are the kinds of problems that show errors in the console. In the grand scheme of things
syntax errors are easy problems to solve because the computer is telling you it can't understand
something, you just have to find out what it is.

Logic Errors can be much harder to solve because the computer doesn't report anything wrong at all.
The program just doesn't do what you think it should or want it to. Tracking down these kinds of errors is
much harder, and requires some practice to get used to it. We suggest some techniques in the levels that
follow.

Levels 13 14 15 16 (click tabs to see student view)

How setPosition and screen dimensions work Teacher Overview

Student Overview

https://studio.code.org/s/csp5/stage/1/puzzle/12

Wrap-up (10 Minutes)

Share chaser games
Share Applications:

Use a Gallery Walk, Pair-Share, or other strategy to allow students to share their Chaser Games with each other.
Encourage students to note design features they would want to include in future applications they create.

 Remarks

Today we were actually introduced to two tools that will help us build increasingly complex applications. The first
was Design Mode, and hopefully it was quickly apparent how powerful this tool is for creating visually appealing and
intuitive user interfaces without cluttering up your code. The second tool was onEvent which is the general
command for all event-handling in App Lab.

Event-driven programs are an important concept in programming, but we've just gotten our feet wet. In the next
lesson we'll go further by adding multiple screens, and getting better at debugging.

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.4 - Programs are developed, maintained, and used by people for different purposes.

View on Code
StudioTeaching Tip

This might be a good reference to project at the front of the room for students as they work on the last few
levels.

Levels 18 19 20 (click tabs to see student view)

How Images Work Student Overview

Finalize Your Chaser Game v.1 Student Overview

https://studio.code.org/s/csp5/stage/1/puzzle/17
file://docs.code.org/applab/onEvent/
http://creativecommons.org/

If you are interested in licensing Code.org materials for commercial purposes, contact us.

file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 2: Multi-Screen Apps
Overview
Students continue learning about Event Driven programming in
this lesson by learning how to add multiple "screens" to an app and
adding code to switch between them. More techniques of
debugging are presented, namely using console.log , a command

that allows them to print out text which the user cannot see. It is
useful for displaying messages to yourself to figure out what is
happening as your program runs. Students will end the lesson by
creating an improved version of the “chaser” game which has
multiple screens.

Purpose
As event-driven applications get more complex, it is easy to
generate errors in a program, and the need to debug the program
will become more prevalent. In some instances, the error will be in
the syntax of the program (e.g., a missing semicolon or misspelled
function name). In other instances, however, programs will have
logical errors which the computer will not catch and so can only be
found by testing. Debugging and learning to interpret error
messages is a critical step in the process of developing reliable
software. Learning about yourself and the types of mistakes you
typically make is one aspect of getting good at debugging.
Learning how to insert console.log statements into your code to
display messages that give you insight into what your program is
doing and when is also an important, universal technique of
program development and debugging.

Agenda
Getting Started

Recall and Move on

Activity

Instructions for Getting Started and Setup

Wrap-up

Share Chaser/Clicker games
Reflection on debugging and error messages

Extended Learning
Assessment

Objectives
Students will be able to:

Write a simple event-driven program that
has multiple screens.
Recognize debugging as an important step
in developing a program.
Use console.log to debug simple issues
related to event-driven programming.

Preparation
Review levels that explain concepts,

decide if you would like to demonstrate
them or have students read/do on their
own.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Unit 5 on Code Studio

Vocabulary
Debugging - Finding and fixing problems
in an algorithm or program.
Event-driven program - a program
designed to run blocks of code or functions
in response to specified events (e.g. a
mouse click)
Event handling - an overarching term for
the coding tasks involved in making a
program respond to events by triggering
functions.

Introduced Code
setScreen(screenId)

console.log

file://docs.code.org/applab/console.log/
https://studio.code.org/s/csp5
file://docs.code.org/applab/setScreen/
file://docs.code.org/applab/console.log/

Teaching Guide
Getting Started

Recall and Move on
Recall or revist important ideas from the last lesson as necessary.

Are students comfortable adding buttons, images and text to an app?
Are students comfortable adding a simple onEvent handler for a button or image?

Address any questions as necessary. Refer students to the instructional pages from the previous lesson that contain
diagrams and explanations of how to do these things.

 Remarks

In the last lesson you ended up making a simple "chaser game" that wasn't much of a game.

In this lesson you'll learn imporove that app by:

adding more screens
and adding a way for the game to end.

Without further ado let's get to it.

Activity

 Transition to Code Studio:

Instructions for Getting Started and Setup
Today students will still work independently but there are a few more problems to solve and mysteries to figure out
than in the previous lesson.

It is recommended that each student have at least one coding buddy or thought partner to work through these
stages with.

Students can read instructions together, and ask questions of each other.

In particular, it's effective to have students do prediciton tasks with a partner.

At the end of the lesson it's okay for students to work more independently as they will be touching adding to their
chaser game project.

 Code Studio levels

Lesson Vocabulary & Resources 1 (click tabs to see student view)

Using Design Mode 2 3 (click tabs to see student view)

Debugging with Console.log 4 5 6 7 8

(click tabs to see student view)

Making Multiple Screens 9 10 11 (click tabs to see student view)

Wrap-up

Share Chaser/Clicker games
Time Permitting it's fun to have students share their work. You can do it a variety of ways.

Do a gallery walk
Or have students share their apps by using the Share tools in code studio - via URL or Text Message
Do small-group demos

Reflection on debugging and error messages
Discuss

This lesson is one of the first times students will likely have consistently generated and responded to error messages.
Students may (incorrectly) view error messages as “bad,” when in reality they are an entirely normal part of
programming and extremely useful when debugging code.

In fact, logical error messages, which can be “silent" and don’t generate error messages are much worse, since they
are much harder to catch. Use this early moment to normalize getting error messages and needing to debug code.

Prompt:

"Today was one of the first times we saw error messages in our programs and started thinking
about debugging our code. Is it “bad” to generate an error message? Will every error in our
programs generate an error? Why might a programmer actually “like” to get an error message?"

Discuss:

Give students an opportunity to share their thoughts, either in small groups or as a class.

Points that might come up:

Even expert programmers make errors, so debugging is a critical step of writing any program.
Since we can assume that all code will have some errors in it, we’d much prefer the computer to catch those errors
for us. Error messages are how the computer gives you a helping hand in writing your program, and often they’ll
include helpful information about how you can fix your code.
Of course, not every error will generate an error message because sometimes we write functional code that does
something different than we want. In order to catch these logical errors, we’ll need to understand how our code is
supposed to run and then test it to make sure that it does.
In either case, this process of finding and fixing errors in your code is entirely normal and is just as important a skill
as writing the code in the first place.

 Remarks

We're making a big deal out of error messages and debugging because they are often hurdles for new learners.

But you just need to have the right attitude about writing code - debugging is part of the process.

You get used to a pattern of:

Write a little code
Test it to make sure it does what you think
Write the next piece

If you do this, the errors you make will tend to be smaller and easier to catch.

Extended Learning

Making a Multi-Screen Chaser Game v.2 12 13 14 15

(click tabs to see student view)

 Teaching Tip

If you didn't before you might consider bringin up this
somewhat off-the-wall analogy: programming and
debugging is like getting dressed up to go out.

You put on some clothes that you think will look good
but then you have to look in the mirror, make some
adjustments and decisions, maybe even realize you
need to go a different direction entirely, and so on –
you are debugging your outfit.
Writing a program is initially is like throwing on some
clothes, and running the program is like looking in the
mirror for the first time. You do it to see what it looks
like, knowing that you’re going to have to make some
adjustments.
But looking in the mirror frequently to see what
everything looks like together actually speeds up the
process. Getting ready to go out, putting on makeup
or combing your hair without looking in the mirror
would not only slow things down, it’s foolish. The
Run. Test. Debug. pattern of behavior is part of the
programming process, just like using a mirror is part
of making yourself presentable.

Add a "bad guy" to the game. If you click the bad
guy instead of the target you lose. Trick: make the
bad guy move to a random location every time
the mouse moves on the screen.

Make a prediction: Exchange code with a partner
and try to figure out what her program does without
running it.

Assessment

If you wish to assess the chaser game, see the
teacher notes associated with that level.

Questions:

1. Which of the following statements about debugging
and program errors is FALSE?

Error messages help programmers identify
problems in their code.
Not all errors in a program will generate an error
message.
Debugging is the process of locating and
correcting errors in a program.
It is common for programs to contain errors the
first time they are written.
A program that does not generate any error messages can be assumed to run as intended.

2. Elements in your app are required to have unique IDs. Given what you now know about how event handlers work,
why is it important for the IDs of page elements to be unique?

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 3: Building an App: Multi-Screen
App
Overview
This lesson gives students time to familiarize themselves with the
process of making event-driven apps before we move on to
deeper content. They will design and create a (minimum) 4-screen
app on a topic of their choosing. There are some other constraints
on the project to help guide students in their thinking. Students are
also encouraged to do independent work, but alongside a "coding
buddy" or "thought partner" to be a help along the way.

Note: This activity is not intended to be a Practice PT but
could be used similarly. The aim is to give an opportunity to get
comfortable with Design Mode and the structure of event-driven
programming in a creative way. Another goal is to intentionally
build in an environment of informal collaboration, even when doing
individual work. Suggestions for containing the scope of the project
and amount of time allocated to it can be found in the lesson plan.

Purpose
This lesson is not heavy on new CS content. It is primarily a time
to reinforce programming skills in App Lab while quickly
prototyping a simple event-driven application. The lesson does,
however, fall at the intersection of the Big Ideas of Creativity and
Programming. The fact that students will share ideas before
programming their projects and will provide feedback using a peer
rubric also mirrors some of the practices of collaboration that
students can employ on the Create Performance Task.

As for the project itself, it probably bears the closest resemblance
to creating a "computational artifact" as outlined in the Explore
Performance Task -- Creating something to communicate an idea
non-textually.

Agenda
Getting Started

Introduce the Multi-screen App mini project.

Activity

Complete the multi-screen app design worksheet
and project
Suggested Project timeline
Complete peer review.

Wrap-up

Incorporate peer feedback
Create PT Prep

Objectives
Students will be able to:

Develop and design a plan for multi-screen
application
Collaborate with a "thought partner" during
the implementation of a project
Create a multi-screen application in App
Lab using simple UI elements and event
handling

Preparation
Print project planning guides (see

student documents).
Review the lesson plan to decide how

many days of class time you want to use
for this mini-project.

Decide how peer review will work
(anonymous or not).

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Activity Guide - Multi-screen App -
Activity Guide

Unit 5 on Code Studio

Vocabulary
Event-driven program - a program
designed to run blocks of code or functions
in response to specified events (e.g. a
mouse click)
Event handling - an overarching term for
the coding tasks involved in making a
program respond to events by triggering
functions.

Make a Copy

https://docs.google.com/document/d/1UE3nIhlDkD8-6fdSQX8qHI-URxFgwTLABSHvGHGh870
https://studio.code.org/s/csp5

Assessment

View on Code
Studio

Teaching Guide
Getting Started

Introduce the Multi-screen App mini project.
 Remarks

Today you will get a chance to make an app of your own design that uses multiple screens and lets you practice
using design mode and programming some simple user interactions. We want to spend most of our time working on
it, so let’s get to it.

Pair students with a "coding buddy" for this project.
Students will make a project independently, but have a partner with whom they can get instant and rapid feedback
and help.

See first two levels of Code Studio which you might use as review-and-kickoff to the project.

Activity

Complete the multi-screen app design worksheet and project
For a suggested project timeline look below the seciton that shows code studio levels.

 Code Studio levels
Levels
 1
 2
 3
 4

Student Instructions

Unit 5: Lesson 3 - Make your own
Multi-Screen App
Background

In the last two lessons we looked at Design Mode and Event-Driven Programming in App Lab. This lesson is all about
you getting a chance to use those new skills to make a multi-screen app. Use your creativity and personal interests to
make your app unique.

Vocabulary

Review

User Interface (UI) - The "User Interface" or UI of an app refers to how a person (user) interacts with the
computer or app.
Event-driven program - a program designed to run blocks of code or functions in response to specified events
(e.g. a mouse click)

https://studio.code.org/s/csp5/stage/3/puzzle/1

This example shows how
buttons, labels and images
can be made to look very
similar. They can all behave
similarly as well depending

View on Code
Studio

 Teaching
Tip

Teaching Tip
Perhaps show/review this page as a warm-up just to tie
up loose threads from previous lessons.

Event handling - an overarching term for the coding tasks involved in making your app respond to events by
triggering functions.

Lesson

Choose the theme of your app.
Complete the Planning Guide.
Share your plan with a classmate.
Program your app.
Give and receive feedback on apps.

Resources

Activity Guide: Multi-screen App (PDF | DOCX)

Continue

Student Instructions

Event-Driven Programming
Recap
Before embarking on making your own app from
scratch let's recap a few important things:

1. Mental Note: UI
elements all function basically the same way

All UI elements have IDs and can listen for user events and be used with
onEvent .

Labels can have a background color, but are designed to be filled with
more text.

Buttons have a default styling (green button) that changes slightly in
color when you click it. But buttons can also have a background image
and background color at the same time which is convenient if your
image is an icon (red thumbsup).

Images can act a lot like buttons, only they can't have text or a
background color.

Screens have IDs and you can use onEvent with them but they don't quite

fit the mould because they have the special property that if you use
onEvent with a screen, it will capture every event of the type you specify

regardless of whatever other elements are clicked on.

What UI element should you use?

There are no particular rules. Use the UI element that makes the most
sense to you and is easiest for you use and do what you want. The UI
elements actually aren't exactly the same, but the basic event-driven

https://docs.google.com/document/d/1UE3nIhlDkD8-6fdSQX8qHI-URxFgwTLABSHvGHGh870/export?format=pdf
https://docs.google.com/document/d/1UE3nIhlDkD8-6fdSQX8qHI-URxFgwTLABSHvGHGh870/export?format=doc
file://studio.code.orgundefined
https://studio.code.org/s/csp5/stage/3/puzzle/2
file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/onEvent/

how you do event handling.

View on Code
Studio

pattern fits.

2. There is a Pattern to Developing Event-Driven
Programs in App Lab

You will find yourself going through this process over and over again. The point is not that it's boring or repetitive (far
from it!), but rather that when you have an idea for something to make, you know you can apply this process to get
it done.

Step 1 - Design Mode

Step 2 - Add onEvent to Code

Step 3 - Write the code for the event handling function

Step 4 - Run. Test. Debug.

Repeat

As you learn more, of course, you'll see there are nuances to these steps, but these are the big ones.

Click continue to see "Tips for Working on Your Own"

Student Instructions

Tips for working on your own
As you are about to embark on your first solo project we thought it would be a good time to give you some tips.

Tip 1: Have a "coding buddy" and "thought partner"

Working on your own doesn't mean working by yourself. It's very useful to have someone nearby who you can use as
a "thought partner". Many professionals work at the same table or desk, even if they are working on completely
different projects, because of the benefits of having someone nearby. There's a lot to remember and a lot to try to
keep straight, so it's helpful to have someone nearby who provide another perspective.

What Thought Partners Do How it might sound

Bounce ideas off each other
"Hey, would it be cool if I tried
x, y, or z?"

Share insights or discoveries
they've made through their
own programming

"Whoa! I didn't know it could
do that! Check it out!"

Answer each other's
questions in the moment

"What's the command to
change the location of an
object again?"

https://studio.code.org/s/csp5/stage/3/puzzle/3

 Teaching
Tip

Teaching Tip
You may want to review the 3 things on this page as a
whole class to kickoff to the upcoming project.

Especially true for talking about "coding buddies" which
is a form of collaboration.

For this and future projects it's worth pointing out that
even if you're doing independent work, you can
have a buddy to help you with technical
problems and to bounce ideas off of. Remind
students that:

It's not a competition!
Work on your own ideas, be generous when helping
others.
You should always write your own code but you
can have a friend help you spot problems.

Plagiarism can present a gray area for students here.

"Help" means:

Helping a friend work through their ideas
Helping a friend get "unstuck" from a bug of a
particular kind.
Suggesting a strategy for getting something done.
Pointing out a cool idea

"Help" does not mean:

Writing code for a friend
Giving your project to a friend to use as a starting
point
Telling your friend what to do

Help Double-check code and
provide a second pair of eyes
for debugging

"Gah! This is driving me nuts.
Can you look at this? What
am I not seeing?"

Tip 2. Persistence Pays
off

When you are learning to program, you will inevitably
run into problems.

As you get better, this doesn't change :) Only the
types of problems do. Like anything else, over time
you stop making the same mistakes you made as a
novice, and in fact, you don't even think about them as
mistakes.

Remember:

1. No program ever works correctly the first time
2. The whole point is to build something up in small

increments
3. You can't break anything. Add code, try it out.

Doesn't work? Get rid of it. Try something else. No
big deal.

4. Add. Run. Test. Debug.

Got problems?:

If you run into a snag where something isn't
working stay calm and work the problem -- This
is where having a program buddy and thought
partner really helps.
There is a reason why it's not working, you just
have to find it.
Once you've solved a problem or bug, you've learned something and you're less likely to make that same kind
of mistake again.

Stick with it. It pays off!

Tip 3. Use online documentation - some new
commands

You'll see we've included a more full toolbox of commands for you to use and experiment with. Some of the
commands may be new to you, but you can probably figure out how to use them if you read the documentation .

View on Code
Studio

1. Hover your mouse over a block and it will show a tool tip with a brief explanation.

2. Click on "see examples" to expand the documentation. It gives more explanation plus
code examples that show how it works.

With those lessons learned...click continue to start making your own
app!

Student Instructions

Multi Screen App
You will be creating your own multi-screen app to practice designing user interfaces and writing event-driven
programs.

Look at the Project Guide and Planning Sheets before programming .

NOTE: Bigger toolbox
You may notice that we've included all of the commands you know so far in the coding toolbox plus a few more
Remember you can hover over a command to see documentation for it.
You can also just try it out to see what it does.

Requirements Reminder
Your app must have a purpose
Your app will have at least 4 screens.
Your app should include text, images, buttons, and sound .
There should be no “getting stuck” on any screen. It should always be possible to navigate from a screen in
your app to some other screen.
Your program code should follow good style.
Your user interface should be intuitive to use.

Suggested Project timeline

https://studio.code.org/s/csp5/stage/3/puzzle/4

 Teaching Tip

This mini-project is a good candidate for asking
students to work on outside of class. For example, you
might do this, which would save you the better part of 2
class days:

Day 1: Take 10 minutes to simply introduce the project,
and move on to the next lesson.

Do planning/sketching outside of class.
Do programming outside of class.

Day 2: (some days later): Full class day. Do gallery
walk and peer review.

 Teaching Tip

Function Before Design Encourage students to work
on getting working connections between screens before
focusing on layout. Function before Design should be
something students get used to as it’s more important.
Design can always be improved.

A proposed schedule for doing this project entirely in-class is shown below. See “Teaching Tips” for alternatives.

This project can take anywhere between one to three days depending how much time you want to spend in class
working on it.

Possible Timeline:

Day 1 - Review and Start Planning

Distribute: Activity Guide - Multi-screen App -
Activity Guide

Review the project requirements, process, and
timeline, review process, and rubric.
Answer any questions and move onto the planning
/ sketching stage.

Planning: Students use Planning Guide to sketch out
multi-screen app.

Example provided in Activity Guide.

Peer Review: Share app sketch with a classmate to
get feedback. Students should focus on giving
feedback about

Connections between pages
Descriptive IDs
Design/ Layout

 Programming: Students start programming their
apps.

Day 2 -- Start/Continue programming your multi-screen app

Programming: Work day. Students should continue working on app.

Goal: Students’ app should be completely functional by the end of Day 2 and ready for debugging tests.

Day 3 -- Finalize their app, get feedback

Focus should be primarily on debugging and making final aesthetic changes.
Students should go through the rubric themselves first before sharing it with peers.

Complete peer review.
Peer Review: Set up peer reviews of students’ final apps.

Wrap-up: Students will improve one piece of their app, based on feedback.

Wrap-up

Incorporate peer feedback
Improve App:

Give students a chance to respond to the feedback they receive on their app. They should pick at least one piece of
feedback to implement in their app. This could be done outside of class, if desired.

Create PT Prep

https://docs.google.com/document/d/1UE3nIhlDkD8-6fdSQX8qHI-URxFgwTLABSHvGHGh870

View on Code
Studio

 Teaching Tip

Peer Review: One strategy for peer review, especially
if you haven’t done any in the class up to this point, is
to do a “double-blind” review where both the
programmer and the reviewer are anonymous to each
other. To do this:

Have students share their apps via the share link, or
bring up on another device.
Assign each student to do a peer review of one or
two other apps, using the rubric provided.
You’ll need some way for students to indicate which
app they are reviewing.
Collect feedback forms and return to original
programmer.
You might also assess students on the quality of
their feedback. (Students will remain anonymous to
each other, but you’ll know who reviewed what.)

 Code Studio levels
Levels
 5

Student Instructions

AP Practice - Create PT - Process
One component of the AP Create Performance Task is describing the development process used for your
program.

2. Written Responses
2b. Describe the incremental and iterative development process of
your program, focusing on two distinct points in that process. Describe
the difficulties and/or opportunities you encountered and how they
were resolved or incorporated. In your description clearly indicate
whether the development described was collaborative or independent.
At least one of these points must refer to independent program
development. (Must not exceed 200 words)

Here's two rows of the scoring guide for this question

https://studio.code.org/s/csp5/stage/3/puzzle/5

Grade the Response
A student wrote the following response.

"In developing my program I encountered two major problems. The first one was early in
programming when sometimes the apple would disappear from the screen. By debugging my program
I was able to recognize that the ranges of my random X values went from 0-3200, not 0-320. I was
easily able to correct this issue in my code. A second issue occurred when I realized that classmates
using the game often didn't know how to start it. In order to fix this problem I made the button
significantly larger and a different color than the background. Afterwards I no longer saw this
problem."

Each row is worth one point that either can or cannot be awarded. Explain why you would or would not award
the points for Row 2 and Row 3.

Hint: Pay particular attention to the last column of the scoring guidelines and the checklists entitled "Do NOT award a
point if..."

Have students complete the Create PT prep question that appears at the end of the lesson.

Assessment

Rubric: Use the provided rubric (in the Activity Guide), or one of your own creation, to assess students’ submissions.

Extended Assessment:

If you want to make the project more like a practice performance task you could have students write responses to
applicable reflection prompts from the real Performance tasks.

You might modify these slightly for this context, but useful prompts are:

From Create PT :

2b. "Describe the incremental and iterative development process of your program, focusing on two distinct points in
that process. Describe the difficulties and/or opportunities you encountered and how they were resolved or
incorporated. In your description clearly indicate whether the development described was collaborative or
independent. At least one of these points must refer to independent program development; the second could refer
to either collaborative or independent program development. (Approximately 200 words)"

From Explore PT::

2b. "Describe your development proces, explicitly identifying the computing tools and techniques you used to
create your artifact. Your description must be detailed enough so that a person unfamiliar with those tools and
techniques will understand your proecess. (Approximately 100 words) ."

Standards Alignment
Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.4 - Programs are developed, maintained, and used by people for different purposes.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 4: Controlling Memory with
Variables
Overview
This lesson gets into the basic mechanics of working with
variables in programs. The lesson shows students how to create
and assign values to variables and navigates through a series of
common misconceptions about variables and how they work.
Along the way, the lesson tries to build up the student’s mental
model of how computers and programs work, which is essential for
being able to reason about programs.

Purpose
Developing a good mental model for how variables work in
computer programs is absolutely essential to long-term success as
a programmer. However, because most students have had years’
worth of math classes before taking this course, there are two
major misconceptions that early students often have about
variables. We suggest that you try to avoid relating this material to
mathematics at all. Some of the words and symbols are the same,
but:

The = sign in programming is an instruction to store a value in
memory, NOT a statement of equality.
“Variables” in computer programming are just named pieces of
memory, NOT unknowns in an equation or symbols for
undetermined values.

Thus, lines of code that assign values to variables and expressions
that use variables are really instructions to retrieve and store
values in memory. And those values change while the program
executes. Being able to reason about what’s happening in
consecutive lines of code like:

 a = a + b;

 b = a + b;

correlates highly with a person’s success in programming because
you must have a good mental model for program execution and
what the computer is doing.

Agenda
Getting Started

Recall patterns in making event-driven apps.
Motivate the need for variables in our programs to
make them more useful.

Objectives
Students will be able to:

Use variables in a program to store numeric
values.
Store the value returned by a function
(randomNumber, promptNum) in a variable
for use in a program.
Debug problems related to variable re-
assignment.
Write arithmetic expressions that involve
variables.
Reason about multi-line segments of code
in which variables are re-assigned multiple
times.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Tutorial - Introduction to Variables
Part 1 - Video (download)
Tutorial - Introduction to Variables
Part 2 - Video (download)
Unit 5 on Code Studio

Vocabulary
Data Type - All values in a programming
language have a "type" - such as a
Number, Boolean, or String - that dictates
how the computer will interpret it. For
example 7+5 is interpreted differently from
"7"+"5"
Expression - Any valid unit of code that
resolves to a value.
Variable - A placeholder for a piece of
information that can change.

Introduced Code

https://youtu.be/G41G_PEWFjE
http://videos.code.org/2015/csp/applab/variables_1.mp4
https://youtu.be/ijjVDBPwA1o
http://videos.code.org/2015/csp/applab/variables_2.mp4
https://studio.code.org/s/csp5

Activity

App Lab: Controlling Memory with Variables

Wrap-up

Foreshadow adding variables to apps.

Extended Learning

write(text)

value1 + value2;

num1 - num2;

num1 * num2;

num1 / num2;

randomNumber

var x = __;

x = __;

var x = promptNum("Enter a value");

var x = "__";

file://docs.code.org/applab/write/
file://docs.code.org/applab/addOperator/
file://docs.code.org/applab/subtractOperator/
file://docs.code.org/applab/multiplyOperator/
file://docs.code.org/applab/divideOperator/
file://docs.code.org/applab/randomNumber/
file://docs.code.org/applab/declareAssign_x/
file://docs.code.org/applab/assign_x/
file://docs.code.org/applab/declareAssign_x_promptNum/
file://docs.code.org/applab/declareAssign_str_hello_world/

 Teaching Tip

The Variables concept video is embedded in one of the
early levels in the lesson on Code Studio, but it’s
recommended that you watch the video as a class so
you can make transitional or motivating comments
before sending students to work in Code Studio.

Teaching Guide
Getting Started

Recall patterns in making event-driven apps.
You are now pretty well acquainted with the basic mechanics of making event-driven apps. There is a pattern to
writing these programs that you should be used to:

Add UI elements to the screen.
Give the UI elements meaningful IDs.
Add event handlers to those elements.

Motivate the need for variables in our programs to make them more
useful.
Moving Forward

However there’s a whole bunch of things that we can’t do in our apps yet. The next step is to learn how to control the
computer’s memory to remember things while the program is running.

Most apps keep track of some information that changes and updates as you use the app. For example, a simple game
can keep track of your score and the number of lives you have left as you play.

Note that keeping track of data while a program is running is different from remembering things in the long term across
multiple uses of the app, things like storing the all-time high score or remembering your user profile.

Most programs need to use memory for even basic processing tasks. App Lab already keeps track of a lot of things for
you in memory without you doing anything, like the position and styling of elements on the screen, especially if they
are moving around.

But you will want to write programs that keep track of data that’s not “built-into” the programming environment. These
apps use and control the computer’s memory to do this, and learning how to use memory in programs is a powerful
skill to have. Today we’ll start!

Activity

App Lab: Controlling Memory with Variables
 Transition to Code Studio

Transition:

The programming tasks in this lesson acquaint you
with basics of working with variables and building up a
mental model for how programs use and manage
memory. To keep things simple, the output will mostly
be simple text displayed to the app screen or debug
console. In the next lesson we’ll apply what you learn
to an app for a simple game.

 Code Studio levels

Unit 5 Lesson 4 Introduction Student Overview

Wrap-up

Foreshadow adding variables to apps.
 Remarks

Now that you’ve had a fair amount of practice working with the basic mechanics of variables, and learning how to
debug your own problems, you’re more than ready to start using variables in apps.

This lesson is subtly one of the most important for you as a programmer. Being able to answer questions like the
last multiple choice question in the lesson on Code Studio means that you have a good mental model for how
programs execute code and how machines work.

Some research has shown that being able to answer questions about simple variable re-assignment correlates
highly with doing well in programming overall. So you’re on your way!

Extended Learning

Students can make their own program that prompts the user for some numeric values and then performs an action.
The user input values could be used to print a calculation to the screen, or they could be used to control some part of
a turtle drawing (such as the number of times to repeat an action).

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CPP - Computing Practice & Programming

CT - Computational Thinking

Basic mechanics of variables Student Overview

Introduction to Variables - Part 1 Student Overview

Levels 4 5 6 7 8 (click tabs to see student view)

Controlling Memory - Other ways to assign values Student Overview

Levels 10 11 12 13 14 15 16 (click tabs to see student view)

Introduction to Variables - Part 2 Student Overview

The Mental Model for Variables Student Overview

Levels 19 20 21 22 23 24 25 26 27

(click tabs to see student view)

Computer Science Principles

5.2 - People write programs to execute algorithms.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 5: Building an App: Clicker Game
Overview
In this lesson, students add variables to two different exemplar
apps to keep track of a score, or a count of some number of button
clicks. The major topic is variable scope and understanding the
differences, benefits, and drawbacks, of using global versus local
variables. This lesson focuses more on using global variables,
since in event-driven apps that’s what you need to keep track of
data across multiple events.

The very basics of a simple if statement are also presented in
this lesson, mostly to highlight the difference between the = and ==
operators. Finally, students are asked to apply what they’ve
learned about variables, scope, and if statements, to make their
own “clicker” game modeled after one of the exemplars they saw
during the lesson.

Purpose
This lesson is mostly a continuation and furthering of our
understanding of variables and how they work. There are many,
many pitfalls and misconceptions about variables and how to use
them in programs for the early learner. Variables are often difficult
to learn because they are not visual, they are abstract, and one
must have a good mental model for what’s happening in the
computer and with program instructions, in order to reason about
the code and develop one’s own solutions to problems.

The topic and concept of variable scope is a big one in any
programming language. However, since many languages do it
differently, the concept of variable scope isn’t listed explicitly as a
learning objective in the CSP framework. As a concept, though,
variable scoping is a form of abstraction - a programming language
lets you create variables with as narrow or broad a scope as you
need to program a certain task. As a general practice, you usually
want to create variables with the most narrow scope you can for
the task at hand, since the other extreme - everything is global -
can become unwieldy or hard to manage, and it doesn’t promote
code reuse.

Agenda
Getting Started

Recall basic mechanics and terminology of working
with variables

Activity

App Lab: Building an App - Clicker Game

Objectives
Students will be able to:

Use global variables to track numeric data
in an app.
Give a high-level explanation of what
“variable scope” means.
Debug problems related to variable scoping
issues.
Modify existing programs to add and update
variables to track information.
Create a multi screen "clicker" game from
scratch

Preparation
Decide whether you want to introduce

the activity guide at the beginning of the
lesson or the end.

Familiarize yourself with the Clicker
Game and rubric, decide how to organize
peer review.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Activity Guide - The Clicker Game -
Activity Guide

Unit 5 on Code Studio

Vocabulary
== - The equality operator (sometimes
read: "equal equal") is used to compare two
values, and returns a Boolean (true/false).
Avoid confusion with the assignment
operator "=",
Global Variable - A variable whose scope
is "global" to the program, it can be used
and updated by any part of the code. Its
global scope is typically derived from the
variable being declared (created) outside of

Make a Copy

https://docs.google.com/document/d/1NLv9y_XQMayjpd4U0brS61gLYRbpDiT-Cm5Z-3CEszQ/edit?usp=sharing
https://studio.code.org/s/csp5

Wrap-up

Peer Review of Clicker Games

any function, object, or method.
If-Statement - The common programming
structure that implements "conditional
statements".
Local Variable - A variable with local
scope is one that can only be seen, used
and updated by code within the same
scope. Typically this means the variable
was declared (created) inside a function --
includes function parameter variables.
Variable Scope - dictates what portions of
the code can "see" or use a variable,
typically derived from where the variable
was first created. (See Global v. Local)

Introduced Code
setText(id, text)

if(){ //code }

__ == __

file://docs.code.org/applab/setText/
file://docs.code.org/applab/ifBlock/
file://docs.code.org/applab/equalityOperator/

Teaching Guide
Getting Started

Recall basic mechanics and terminology of working with variables
Recall In the previous lesson, we learned about the basic mechanics of working with variables in JavaScript. We
developed a mental model for thinking about how values are stored and retrieved from memory and that we should
read the “=” sign as “gets” to avoid confusion.

Moving forward The whole purpose of learning about variables though is so that our apps can make use of them
while a program is running. In this lesson, we’ll see how to do that. So let’s get to it.

Activity

App Lab: Building an App - Clicker Game
Teacher Note:

This Activity Guide - The Clicker Game - Activity Guide is not strictly needed until the very end of the
lesson -- it is referred to in level 21
However, if you think it would provide some motivation, you may want to optionally show this activity guide at the
beginning of the lesson.

 Code Studio levels

Lesson Vocabulary & Resources 1 (click tabs to see student view)

Clicker Game Demonstration 2 (click tabs to see student view)

AppLab Practice 3 4 5 6 (click tabs to see student view)

Reflection on Debugging 7 (click tabs to see student view)

Variable Scope: Local vs. Global 8 (click tabs to see student view)

Debugging Variables 9 10 11 12 (click tabs to see student view)

Using Global Variables 13 14 (click tabs to see student view)

Simple Decisions with if-statements 15 16 17 18 19

 20 (click tabs to see student view)

https://docs.google.com/document/d/1NLv9y_XQMayjpd4U0brS61gLYRbpDiT-Cm5Z-3CEszQ/edit?usp=sharing

Wrap-up

Peer Review of Clicker Games
Activity Guide - The Clicker Game - Activity Guide contains a rubric that students can use to evaluate their
classmates’ apps. It is up to you to determine who should evaluate which programs, how to pair or group students,
and the degree of anonymity you wish to maintain.

Peer review should be a useful activity for students in preparation for the Create Performance Task in which they
need to give and receive feedback with a partner to improve their programs.

Transition: Now that we understand a bit about variables and how to use them in our programs, a whole new world
will open to us. First, we will learn that variables can hold other kinds of data besides numbers . We’ll also learn
other ways to get data from the user using other UI elements like text input, pull-down menus, and so forth.

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

If you are interested in licensing Code.org materials for commercial purposes, contact us.

Project: Clicker App 21 (click tabs to see student view)

(new) AP Practice Response - Choosing an Abstraction 22

(click tabs to see student view)

https://docs.google.com/document/d/1NLv9y_XQMayjpd4U0brS61gLYRbpDiT-Cm5Z-3CEszQ/edit?usp=sharing
http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 6: User Input and Strings
Overview
In this lesson, students are introduced to the string data type as a
way of representing arbitrary sequences of ASCII characters. They
will use strings to accept input from a user as they work on
mastering two new UI elements, the text input and the text area.
Students combine these skills to develop a simple Mad Libs® app.

Mad Libs® is a trademark of the Penguin Group (USA)
LLC., which does not sponsor, authorize or endorse this
site.

Purpose
Strings are a feature of essentially every programming language,
and they allow for variable-length pieces of text to be represented,
stored, and manipulated. While a single string can be stored in a
variable, it is worth noting that a string will typically use much more
memory than a number. Numbers are typically stored in fixed-
width 8-, 16-, 32-, or 64-bit chunks. ASCII characters require a
single byte and so a string of 100 characters, short by most
standards, would require 800 bits in order to be stored in memory.
While “typed” programming languages require you to declare the
size and type of a variable before you use them, in more dynamic
programming languages, including JavaScript, this memory
management is abstracted away.

Agenda
Getting Started

Explore a Mad Libs app and plan your own

Activity

App Lab: User Input and Strings

Wrap-up

Objectives
Students will be able to:

Identify strings as a unique data type which
contains a sequence of ASCII characters.
Describe characteristics of the string data
type.
Accept string input in a program.
Manipulate user-generated string input to
generate dynamic output.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Unit 5 on Code Studio
Activity Guide - Mad Libs - Activity
Guide

Vocabulary
Concatenate - to link together or join.
Typically used when joining together text
Strings in programming (e.g. "Hello,
"+name)
String - Any sequence of characters
between quotation marks (ex: "hello", "42",
"this is a string!").

Introduced Code
getText(id)

var x = prompt("Enter a value");

str.toUpperCase

str.toLowerCase

Make a Copy

https://studio.code.org/s/csp5
https://docs.google.com/document/d/1M2mhlY02hsvczLG3oe9a6n90lGb7Vrm0F4tNRS5eBa8/edit?usp=sharing
file://docs.code.org/applab/getText/
file://docs.code.org/applab/declareAssign_x_prompt/
file://docs.code.org/applab/toUpperCase/
file://docs.code.org/applab/toLowerCase/

 Teaching Tip

Put a time limit (e.g., 5-10 minutes) on this
brainstorming session. It is intended to drive interest in
and provide context for the coming activities. Students
should feel free to change their ideas later in the lesson
when they actually build their Mad Libs app.

Teaching Guide
Getting Started

Explore a Mad Libs app and plan your own
Explore: Students should begin the lesson by moving to the first activity in Code Studio where they will use a Mad
Libs app. Over the course of this lesson students will develop skills that will allow them to build their own Mad Libs app
by accepting user input as strings. Note: After students move to Code Studio, they should complete the Activity Guide
before continuing.

Distribute: the Activity Guide - Mad Libs -
Activity Guide. Students should use this opportunity
to decide on what the theme of their Mad Libs app will
be, what text they will accept into their app, and how it
will be incorporated into its output. The primary
guidelines of the project (also included in the Activity
Guide) are:

The app should be a “how-to” Mad Libs (e.g., “How
to take care of your pet ostrich”). Afterwards, you list steps with key components left open for user input. This is
primarily to help students quickly conceive of ideas.
There should be at least 3 steps in their instructions.
Their app should accept at least 3 pieces of user input.

Before moving into the rest of Code Studio, students should have a rough outline of their project.

Once they have completed their outlines, students should return to Code Studio.

Activity

App Lab: User Input and Strings

 Code Studio levels

Wrap-up

Share: Once students have completed their applications they should share their work with their peers, trying one
another’s Mad Libs.

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

Unit 5 Lesson 6 Introduction Student Overview

Levels 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 (click tabs to see student view)

https://docs.google.com/document/d/1M2mhlY02hsvczLG3oe9a6n90lGb7Vrm0F4tNRS5eBa8/edit?usp=sharing

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 7: If-statements unplugged
Overview
We take a whole lesson to learn about if statements, what they

are, the terminology around them, and what they have to do with
"selection" in programs. Students trace simple robot programs on
paper to develop a sense of how to read and reason about code
with if statements in it. Students also try their hand at writing code

by hand to handle a robot situation.

Purpose
The activities here get right to many commons misonceptions
about how if-statments work and how programs execute. Students
may have a simple common-sense intuition about how if-
statements work, but there are several ways you can get your
wires crossed when considering how programs actually execute.
There are two main issues: 1) how the flow of program execution
works, and 2) How complex logical statements are composed and
evaluated. In this lesson we just address program flow and tracing
execution. We'll look at more complex logical expressions later.
Even though Boolean expressions show up in this lesson, we try to
avoid using that term until the next lesson. For this lesson it's a
condition that is simply true or false.

Agenda
Getting Started (5 mins)

When v. If

If-statements Unplugged (40 mins)

"Will it crash?" Activity

Wrap Up (20 mins)

What was trickiest?
Algorithms and Creativity

Objectives
Students will be able to:

Reason about if-statements by tracing
pseudocode programs by hand
Write a short program in pseudocode that
uses if statements
Explain the purpose of if-statements in
programs

Preparation
Decide whether or not to print the "Will it

Crash?" Activity Guide for students (it's ~6
pages, but nice to have on paper. There
are digital alternatives, though)

Decide how students will review the first
two code studio pages - see teaching tips.

Budget time: the main activity is working
through the problems in the "will it crash?"
activity - keep in mind that the last problem
ask students to write code which may take
time as well.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Teacher

KEY - Will it Crash? - Answer Key

For the Students

Will it Crash? - Activity Guide

Annotated Pseudocode: if-statements
and Robot - Resource

Breakdown - If-statements explained -
Resource

Unit 5 on Code Studio

Vocabulary
Conditionals - Statements that only run
under certain conditions.

Make a Copy

Make a Copy

Make a Copy

https://studio.code.org/s/csp5/stage/7/puzzle/1/
https://docs.google.com/document/d/1wuC7wypejOSs9A8VfyECNNWuAJbSbzN4EHSrHi-sxxc
https://docs.google.com/document/d/1i3g-wTNQ0MlCeL57SdNZ-e6QhdiKk9txfrAKTAQ4pDc
https://docs.google.com/document/d/1KGF-HxAP65bvQbzugKORXnzfplptWvw2eqCMntm8qS0
https://studio.code.org/s/csp5

If-Statement - The common programming
structure that implements "conditional
statements".
Selection - A generic term for a type of
programming statement (usually an if-
statement) that uses a Boolean condition to
determine, or select, whether or not to run a
certain block of statements.

 Discussion
Goal

Distinguish between events (“when”) and conditional
statements (“if”). In everyday conversation, it is
common to interchange the words “when” and “if,” as in
“If the user presses the button, execute this function.”

In programming event-driven apps, “when” should refer
to an event and “if” should refer to a program executing
some conditional logic – deciding whether to run some
code, based on a boolean condition.

 Teaching Tip

Don't get too hung up on word-parsing "when" v. "if".
This distinction is nuanced and in the long run is
actually not hugely important. But it can be a distraction
early on because of ambiguities in common English
language usage - which is why we draw attention to it
here.

As students gain more experience with if statements,
the difference between events and if statements will
likely become more clear and obvious.

For now, the key idea is that "if" statements are new
entity that let us do things we could not do with event
handlers.

Teaching Guide
Getting Started (5 mins)

When v. If
Most of the programs you've written so far have
event handlers that get triggered when certain
events occur.
But in the last program - the version of "Apple Grab"
- we had a very simple if statement that said

something like:

 if(count==20){
 setScreen("gameOver");
 }

The introduction of "if" introduces an English language issue for us moving forward. Here is an exmaple:

Prompt:

I'm going to read out loud two sentences that describe a program. With a partner discuss what the
difference is between them, and decide which one is "right". Here are the two sentences:

1. When the button is clicked add one to the score.
2. If the button is clicked add one to the score.

Give pairs a minute to discuss and then ask which one people think is "right." Get a few opinions out, but don't stop
here.

Let's try another one:

1. When the score reaches 20, set the screen to "game over."
2. If the score reaches 20, set the screen to "game over."

Give pairs a minute to discuss and then ask which one people think is "right".

Discuss

Points to raise during discussion:

There is no right answer. In English both pairs of
sentences mean basically the same thing.
However in programming, using the words "if"
and "when" map to some expectations about how
the underlying code is written.
Here is the difference:

"When" is used in reference to an event --
When something happens respond in such
and such a way.

"If" is used in reference to a decision about
whether or not to execute a certain piece of code
-- If something is true, then do this, otherwise do that .

When describing the behavior of a program events and decisions might get mixed together. For example:

"When the button is clicked, if the score is 20 go to 'game over', otherwise add one to the
score".

 Transitional Remarks

View on Code
Studio

 Teaching
Tip

View on Code Studio to access answer key(s)

Today's activity focuses soley on if statements.

If the distinction between "when" and "if" is still a little fuzzy, that's okay.

For now, the key idea is that if statements are new entity that let us do things we could not do with event handlers -
- writing code to make decsions about whether or not to run some other piece of code.

If-statements Unplugged (40 mins)

 Code Studio levels
Levels
 1
 2
 3

Student Instructions

Unit 5: Lesson 7 - If Statements
Unplugged
Background

We take a whole lesson to learn about if statements, what they are, the terminology around them, and what they

have to do with "Selection" in programs. We trace simple robot programs on paper to develop a sense of how to read
and reason about code with if statements in it.

Lesson

Introduction to if statements with the AP pseduocode

A worked example with if statements and the "robot"

"Will it Crash?" Activity

Vocabulary

if Statement - The common programming structure that implements "conditional statements".

Conditionals - Another term for if statements -- statements that only run under certain conditions.

Selection - A generic term for a type of programming statement (usually an if-statement) that uses a Boolean
condition to determine, or select, whether or not to run a certain block of statements.

Resources

In order of usage:

Resource - Breakdown - If-statements explained (embeded in code studio, next page)
Resource - Annotated Pseudocode: if-statements and Robot (embeded in code studio, next pages)
Activity Guide - Will it Crash? (PDF | DOCX)

Continue

Student Instructions

https://studio.code.org/s/csp5/stage/7/puzzle/1
https://docs.google.com/document/d/1wuC7wypejOSs9A8VfyECNNWuAJbSbzN4EHSrHi-sxxc/export?format=pdf
https://docs.google.com/document/d/1wuC7wypejOSs9A8VfyECNNWuAJbSbzN4EHSrHi-sxxc/export?format=doc
file://studio.code.orgundefined

View on Code
Studio

 Teaching
Tip

 Teaching Tip

Review this as a class
and: point out the key
idea have students read
the annotations in the
pseudocode
documentation.

The important part here
is to familiarize
students with AP
Pseudocode for if-
statements and the
robot commands.

Some of the
terminology can be
reviewed later by
students.

Student Instructions

Big-Picture: If-statements
Word Soup: If-statements,
Conditionals, Selection

If-statements exist so that your program can
adapt, respond, or make choices about whether or
not to execute certain portions of code based on
some condition that you check while the program is
executing.

Because it involves checking conditions, these
statements are sometimes called conditional
statements, or sometimes just conditionals.

A conditional statement (if-statement) requires a conditional expression, something that is either true or false
and it's what an if-statement uses to decide whether or not to execute a certain portion of code.

A generic term used by the AP CSP Framework for this is Selection. As in: your program can select whether or
not to run certain blocks of code.

Key Idea: If-statements are how programs adapt and respond to
conditions on the ground.
The whole point is to be able to handle cases where you can't know ahead of time whether or when certain conditions
will exist in your program. So you have to write code to say something like: "Okay, at this point in the program, if such
and such is true, then do this, otherwise do that."

Practice with the AP Pseudocode
For the activities that follow, we're going to get our feet wet with if-statements using the AP CS Principles
pseudocode language. To start we're going to use the IF/ELSE structures, but to keep things simple we'll only use
the Robot conditional expression CAN_MOVE (direction) - which evaluates to true or false.

Below is the official documentation for Selection and Robot statements along with some extra commentary.

https://studio.code.org/s/csp5/stage/7/puzzle/2

View on Code
Studio

Selection

Text
IF (condition)
{
 <block of statements>
}
Block

The code in block of
statements is
executed if the
Boolean expression
condition evaluates
to true; no action is
taken if condition
evaluates to false.
Commentary:
An if-statement might
execute some code
or it might not. It
checks to see IF
something is true
(the “condition”). If it
is true, then run
some code
contained inside the
if-statement.
 Otherwise, if the
condition is false,
just ignore the whole
block and pick up
executing the code
that comes after it.

View as a separate document: Annotated Pseudocode - If-statements and Robot

Student Instructions

A Worked Example
The following shows a step-by-step, line-by-line
execution of a 10-line program with if-statements that
uses the AP pseudocode for if-statements and the
robot.

The purpose of the example is to show:

Code executes one line at a time from top to
bottom.
Each if-statement condition is checked in the order
of execution
The conditions of later if-statements may be
affected by what did, or didn't happen, in earlier
lines of code.

https://docs.google.com/document/d/1i3g-wTNQ0MlCeL57SdNZ-e6QhdiKk9txfrAKTAQ4pDc
https://studio.code.org/s/csp5/stage/7/puzzle/3

 Teaching
Tip

 Teaching Tip

Again, this page is
largely meant as
reference.

You don't need to
belabor the points here,
as students will get
much more practice
with the "Will it crash?"
activity.

Remind students that
this is here if they need
to refer back to it when
doing the next activity.

You have a few options
for how to review this
worked example:

You may want to
review this worked
example as an entire
class, projecting it on
the screen.
Have students read,
individually, or in
pairs, then follow up
with a partner, or
review questions.
You may want to
print - though it is a
long-ish document to
print, especially since the "will it crash" handout is
long as well.

Don't miss the problem at the very end of the
document. Students should try it and you can review as
a class to verify that they understand.

Code Robot Scenario Commentary
1 ROTATE_LEFT ()

Before:
The starting
scenario before
any lines have
been executed.

Before reading the
rest of the page,
you might want to
try to predict
where the robot
will end up.

2 IF (CAN_MOVE
(forward))

3 {
4

 MOVE_FORWARD
()

5 }
6 ROTATE_LEFT ()
7 IF (CAN_MOVE

(forward))
8 {
9

 MOVE_FORWARD
()

10}

1
>

ROTATE_LEFT ()
 Line 1

executes:
Robot turns 90
degrees to the
left

2 IF (CAN_MOVE
(forward))

3 {
4 MOVE_FORWARD

()
5 }
6 ROTATE_LEFT ()

View the above as a separate document: Worked Example - If-Statements and Robot

Before clicking continue:

https://docs.google.com/document/d/1KGF-HxAP65bvQbzugKORXnzfplptWvw2eqCMntm8qS0

View on Code
Studio

 Teaching Tip

The last problem asks students to write some code by
hand, and requires some time and thought. You might
consider giving it for homework.

Make sure you understand each step of the example
Have tried out the last one on your own? and compared results with a classmate?

"Will it crash?" Activity
Distribute: Will it Crash? - Activity Guide

Put students in partners
Review the rules and do the first example together (if necessary)
Partners should work together to trace and reason about the code.

Compare results

Put groups together to review the ending state and position of robots for each scenario.
If there are disagreements about the end state, have pairs work it out and re-trace the examples.
If there are common problems, save them, and review in the wrap-up

Write code for the last problem and exchange

Partners can work on writing the code together
When done, have groups exchange code and trace
the other team's work to verify correctness or
reveal problems.

Wrap Up (20 mins)

What was trickiest?
If there were common problems that students had trouble with be sure to review those.

Prompt:

Were you tripped up by any of the problems? Which ones? Why?
What's the difference between a seqeunce or series of if statements versus an if-else statement?

Discussion

Points to raise during discussion:

If-statments and conditional expressions are huge part of programming and we're going to spend some time
digging in with them.
There are two main issues to concern yourself with when it comes to if-statements and today we've looked a lot at
one of them, namely, program flow and order of execution.
For example, one very common misconception, or place where people get tripped up is, in the difference
between a sequence of if-statements, and using an if-else statement.

Algorithms and Creativity

 Code Studio levels
Levels
 4

Student Instructions

Algorithms - Solving Problems
What is an algorithm?

https://docs.google.com/document/d/1wuC7wypejOSs9A8VfyECNNWuAJbSbzN4EHSrHi-sxxc
https://studio.code.org/s/csp5/stage/7/puzzle/4

By asobuno (Own
work) [CC BY-SA
3.0], via Wikimedia
Commons

By Clem Rutter,
Rochester, Kent. (self)
[GFDL or CC BY
3.0], via Wikimedia
Commons

 Teaching
Tip

How to use this level

This level has a lot of text. Ways you might use it /
incorporate it into your class:

Assign as reading for students the day before
Have students stop at this level during the normal
progression and read as a group - discuss key
points.
Read and summarize for your students
Make note of it as a reference for students that
explains "algorithms"
Use in conjunction with a preview of the AP Create
Performance Task

Definition

An algorithm is a precise sequence of instructions for a
process that completes a task. Algorithms can be
executed by a computer and are implemented using
programming languages.

Automating Physical Tasks

Physical Tasks in Daily Life

Daily life is filled with tasks. Most mornings, for example, you'll need to get dressed, pack your things, and then travel
from one place to another. Your day at work or school will be filled with tasks to complete. Even keeping up with
friends, relaxing, or going to bed includes some tasks if you look closely.

Automating Tasks

We want to complete most tasks quickly, easily, and reliably. One important way we do this is by identifying step-by-
step processes that we know work well. The steps to tie your shoes or the steps of a recipe are examples of
processes we use to help us effectively take care of everyday tasks.

Processes to complete tasks are powerful because not only can humans use them, so can machines. Automation is
the use of machines to complete some task with little to no human intervention, and from agriculture to manufacturing
to transportation, it has transformed our society, economy, and daily lives.

Automation Requires Algorithms

At the heart of automation is a well-defined step-by-step process that the machine is completing. A machine to weave

https://creativecommons.org/licenses/by-sa/3.0
https://commons.wikimedia.org/wiki/File%3ATying_one's_shoe.jpg
http://www.gnu.org/copyleft/fdl.html
http://creativecommons.org/licenses/by/3.0
https://commons.wikimedia.org/wiki/File%3AQSMM_John_Pilling_%26_Son_Loom_2707.JPG

cloth, for example, is built to make stitches in a precise way in a precise number of rows using a precise number of
threads. In other words, automating a tasks means first identifying the process or algorithm your machine will
complete. Often a human could use that same algorithm to complete a task, but the machine will typically do so more
quickly, easily, and reliably.

Algorithms and Information Tasks

Information Tasks and Tools

Many tasks don't require physical work, but they do require thinking. For example, you might need to keep track of
money, remember birthdays, or schedule activities. At their core these problems have to do with how we organize and
make sense of information. Tools like calendars, clocks, and financial records help us complete these information
tasks.

Automating Information Tasks

Just like physical tasks, many information tasks can be completed using algorithms. For example when you learn the
steps to add or multiply two numbers, you're really just using an algorithm for addition or multiplication. The
recognition that information tasks could be described algorithmically led to the desire to automate these tasks as well,
and eventually, to the creation of the computer.

Algorithms, Programming, and Computer Science

The Everything Machine

Through history machines to automate information tasks usually did only one thing. A machine could track stars in the
sky, or add numbers, but couldn't do both. By comparison, a single modern computer can add numbers, show video,
communicate over the Internet, and play music. This is clearly a very different type of machine!

Everything is Numbers

Many important ideas led to the design of the modern computer. First was the realization that most information can be
represented as numbers. In fact, you learned in Units 1 and 2 that text, images, sound and many other pieces of
information you can dream up can be represented in some way as binary numbers. This means information problems
can be represented in a standardized way.

Simple Commands

The next important realization is that information processes can be broken down into a common set of very simple
commands. For example those steps might be adding or subtracting two numbers, moving information from one place
to the next, or comparing two numbers. Even complex information processes like sorting a list of 1,000,000 names or
determining if a picture has a cat in it can be represented on some level as a sequence of these simple commands.

People Write Algorithms for Computers

Together these two ideas allow information tasks to be standardized to a degree that a single machine (a computer)
could be designed to complete many of them. In order for this to work a computer is first designed to do this small set
of low level commands. Next, and most importantly, the computer is designed to let a human being write out their own
sequence of commands to control the machine to complete the task at hand. Said another way, a computer is a
machine that's designed for a human to write algorithms for it to run!

Algorithms and Creativity

Sequence, Selection, Iteration

Any programming language only provides so many commands. Algorithms are created by combining these
instructions in three ways. In fact, using these three you can describe ANY algorithm completed by a computer.

Those three ways are:

Sequence: This is placing commands in an order. When you write a program that runs line by line you are
defining the order in which a computer should run the fundamental commands that it understands.

Selection: This is when a computer chooses to run one of two or more sections of code. When you use an if-
statement you are making use of selection.

Iteration: This is when a computer repeats a section of code. For example you can do this by using a loop.

Algorithms, Programming, and Creativity

Even with the limited commands a computer understands and the limited ways you can combine them, there are
actually many, conceivably infinite, ways to write a program to complete a task. Some may be more efficient or easier
to understand than others, but there is typically no single "right" algorithm to complete a task. There also isn't an
"algorithm for writing algorithms". You need to investigate and understand the problem you are trying to solve, and
then get creative with how you'll combine the tools the programming language provides you. Computer science is a
creative discipline because computers literally require human creativity to do anything at all!

Algorithms, Unit 5, and the AP Exam

Algorithms and AP Computer Science Principles

(1) Algorithms is one of the seven big ideas of AP Computer Science Principles.

(2) For the AP Create Performance Task you need to...

[identify] a code segment that contains an
algorithm you developed...[and]...explain
how the algorithm helps achieve the purpose
of your program.

Review: Together read the summary of algorithms found in the last level of this lesson. Note this is a longer
explanation of algorithms.

 Remarks

It's likely that solutions to the last problem varied considerably. Point this out as a positive.

Programming is a creative activity.
When you are planning a solution to the problem, you are thinking about algorithms

Prompt:

How many different coding solutions to the last problem were there?
Why are different solutions possible?

Discussion

Points to raise during discussion:

There are multiple correct solutions
This is because there are multiple ways to think about the problem
There are also multiple algorithms for solving it
Even if you used the same algorithm, the code might be different.
All of this demonstrates that programming is a creative activity.

 Remarks

Next we'll look at writing if statements in JavaScript, and also dive into understanding conditional expressions a little
more deeply

Standards Alignment
Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.2 - People write programs to execute algorithms.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 8: Boolean Expressions and "if"
Statements
Overview
In this lesson, students write if and if-else statements in

JavaScript for the first time. The concepts of conditional execution
should carry over from the previous lesson, leaving this lesson to
get into the nitty gritty details of writing working code. Students will
write code in a series of "toy" problems setup for them in App Lab
that require students to do everything from debug common
problems, write simple programs that output to the console, or
implement the conditional logic into an existing app or game, like
"Password Checker" or a simple Dice Game. The lesson ends with
a problem requiring nested if statements to foreshadow the next

lesson.

Purpose
The main purpose here is Practice, Practice, Practice. The
lesson asks students to write if-statements in a variety of contexts
and across a variety of program types and problem solving
scenarios.

Agenda
Getting Started

When vs. If
Optional: Flow Charts

Activity

App Lab: Boolean expressions and if-statements

Wrap-up

Compare and Contrast - easy/hard
Nested if statements

Objectives
Students will be able to:

Write and test conditional expressions
using comparison operations
Given an English description write code (if
statements) to create desired program logic
Use the comparison operators (<, >, <=,
>=, ==, !=) to implement decision logic in a
program.
When given starting code add if, if-else, or
nested if statements to express desired
program logic

Preparation
Forum
Review student instructions in Code

Studio (see below) along with teacher
commentary.

(Optional) A copy of (Optional)
Flowcharts - Activity Guide

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

(Optional) Flowcharts - Activity Guide

Unit 5 on Code Studio

Vocabulary
Boolean - A single value of either TRUE or
FALSE
Boolean Expression - in programming,
an expression that evaluates to True or
False.
Conditionals - Statements that only run
under certain conditions.
If-Statement - The common programming

Make a Copy

http://forum.code.org/c/csp-unit3/lesson18
https://docs.google.com/document/d/1GTmFjF3V3mp7LbzW0ivUIWhW_aeCkoapwwWVYjEyIxs/edit?usp=sharing
https://docs.google.com/document/d/1GTmFjF3V3mp7LbzW0ivUIWhW_aeCkoapwwWVYjEyIxs/edit?usp=sharing
https://studio.code.org/s/csp5

structure that implements "conditional
statements".
Selection - A generic term for a type of
programming statement (usually an if-
statement) that uses a Boolean condition to
determine, or select, whether or not to run a
certain block of statements.

Introduced Code
if(){ //code }

if (){ // if code } else { // else code }

__ == __

__ != __

__ > __

__ >= __

__ < __

__ <= __

file://docs.code.org/applab/ifBlock/
file://docs.code.org/applab/ifElseBlock/
file://docs.code.org/applab/equalityOperator/
file://docs.code.org/applab/inequalityOperator/
file://docs.code.org/applab/greaterThanOperator/
file://docs.code.org/applab/greaterThanOrEqualOperator/
file://docs.code.org/applab/lessThanOperator/
file://docs.code.org/applab/lessThanOrEqualOperator/

 Teaching Tip

These are nuanced distinctions and may not be
immediately clear to every student. As students gain
more experience with if statements, the difference
between events and if statements will likely become
more clear. For now, they should at the very least
understand there is a difference between the two and
begin to get in the habit of asking whether they want to
run a block of code based on a user action, a condition,
or some combination of the two.

Teaching Guide
Getting Started

When vs. If
 Remarks

In everyday conversation, it is common to
interchange the words “when” and “if,” as in “If the
user presses the button, execute this function.” The
English language is tricky. We often say “if” the
button is clicked when really we mean “when”
a button is clicked. This can cause confusion
because “if” has a well-defined meaning in
programming.

How are conditionals (if statements) different
from events?

Here is one way to think about it:

Events are setup by a programmer, but triggered by the computer at any momement in time.

If statements are a way a programmer can have her code make a decision during the normal flow of execution to
do one thing or another.

As we have already seen in prior lessons, an if statement is evaluated when the code reaches a particular line and
uses a true/false condition (like a comparison between values e.g., score == 5), to decide whether to execute a
block of code.

Transition

As we begin to write event-driven programs with if-statements we need to be clear about what we mean, or what
we intend our programs to do.
Sometimes when you say "if" you mean "when" and vice-versa. Just be on the lookout.

Optional: Flow Charts
Some people find flow-charting a useful exercise for thinking about if-statements.

Here is an optional activity: (Optional) Flowcharts - Activity Guide you can do with your students to warm up
on paper.

Alternatively, you might revisit this activity after students have had some experience writing if-statements to solidify
their understanding.

Activity

App Lab: Boolean expressions and if-statements
 Transition to Code Studio

Students will use be introduced to conditionals by solving many different types of small puzzles and writing many
small programs in different contexts with different kinds of output.

Read the student instructions and teacher commentary for more info.

 Code Studio levels

Unit 5 Lesson 8 Introduction Student Overview

https://docs.google.com/document/d/1GTmFjF3V3mp7LbzW0ivUIWhW_aeCkoapwwWVYjEyIxs/edit?usp=sharing

 Discussion
Goal

There are of course no right answers to these prompts.
But it should be an opportunity for students give voice
to new learnings or frustrations.

It's also an opportunity for you get insight about areas
where your students are struggling, or things you might
need to revisit.

Wrap-up

Compare and Contrast - easy/hard
Reflection Prompt:

"You've now had experience reasoning
about if-statements on paper with the "Will
it Crash?" activity, and now actually writing
if-statements in working code. Compare and
Contrast these experiences.

For "Will it Crash" - what was easy? what was
hard?
For this lessson, writing if-statements - what was
easy, what was hard?
If there was one thing you wish you understood better at this point, what would it be?

Introduction to Conditionals: Boolean Expressions
Student Overview

Boolean Expressions and Comparison Operators Student Overview

Levels 4 (click tabs to see student view)

Introduction to Conditionals: if Statements Student Overview

How If Statements Work pt 1 Student Overview

Levels 7 8 9 (click tabs to see student view)

Introduction to Conditionals: if-else Statements Student Overview

How If-Else Statements Work Student Overview

Levels 12 13 14 (click tabs to see student view)

How Dropdown Menus Work Student Overview

Levels 16 17 18 (click tabs to see student view)

Nested if statements
Prompt:

"The last problem ("it's the weekend") was tricky. What made it hard? How did you end up solving
it?"

Let students discuss for a moment and then bring to full class discussion. Points to raise:

What made it hard was that you needed to check more than one condition at the same time. You needed to say "it's
saturday OR sunday". That's more than one condition to check.
So a solution (using only what we know so far) is to nest if-statements.
Nesting if statements is one way to check more than one condition at a time.

Transition

There are other ways to check more than one condition at a time that we will learn about in the next lesson.

Standards Alignment
CSTA K-12 Computer Science Standards (2011)

CL - Collaboration

CPP - Computing Practice & Programming

CT - Computational Thinking

Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 9: "if-else-if" and Conditional
Logic
Overview
In this lesson, students will be introduced to the boolean (logic)
operators NOT, AND, and OR as tools for creating compound
boolean conditions in if statements. Students will learn how to
more efficiently express complex logic using AND and OR, rather
than deeply nested or chained conditionals. Students will work
through a worksheet that covers the basics and a few problems
with evaluating logical expressions, then write code in App Lab to
practice using && and || in if statements. Finally, students will
improve the Movie Bot so it can respond to multiple keywords and
provide recommendations based on both the genre and rating
provided by the user.

Purpose
Similar to the previous lesson, the primary objective here is
practice, practice, practice! We want students to get into the
exercises and solve many different types of problems in many
different types of contexts so they can pick up the patterns of
writing, testing and debugging if-statements with more complex
conditions.

This lesson introduces both the if-else-if construct and the

Boolean operators AND, OR, and NOT. While it may appear that
these operators extend the types of boolean conditions we can
write, this is not actually the case. Nested and chained conditionals
alone can be used to express any possible set of boolean
conditions. The addition of these new boolean operators merely
helps that expression be more succinct, clear, and elegant. But
logic can get tricky, since often the way we say things in English is
not the way we need to write them in code.

Agenda
Getting Started

Review nested and chained conditionals
Compound Conditionals worksheet - page 1

Activity

Transition to Code Studio practice using && and ||

Wrap-up

Review what makes logic tricky
Create PT Prep
Preview "Building an App: Color Sleuth"

Extended Learning

Objectives
Students will be able to:

Write and test conditional expressions
using Boolean operators AND (&&) OR (||)
and NOT (!)
Given an English description write
compound conditional expressions to
create desired program logic
Use a "chain" of if-else-if statements to
implement desired program logic
When given starting code add if-else-if
statements or compound boolean
expression to express desired program
logic

Preparation
Decide whether to use Compound

Conditionals worksheet. (Best to use after
students have learned about if-else-if and

Boolean Operators AND, OR and NOT).

Note: The first page of the worksheet
should be distributed separately.

Review code studio levels and
associated teacher's notes.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Teacher

Worksheet KEY - Compound
Conditionals

For the Students

(Optional) Compound Conditionals -
Worksheet

Unit 5 on Code Studio

Vocabulary

Make a Copy

https://studio.code.org/s/cspunit3/stage/20/puzzle/1
https://docs.google.com/document/d/1hQay7DviSRYaVQr54ijMFgNhJNrnPt4-ASzHOxic5zM/edit?usp=sharing
https://studio.code.org/s/csp5

Boolean - A single value of either TRUE or
FALSE
Boolean Expression - in programming,
an expression that evaluates to True or
False.
Conditionals - Statements that only run
under certain conditions.
If-Statement - The common programming
structure that implements "conditional
statements".
Selection - A generic term for a type of
programming statement (usually an if-
statement) that uses a Boolean condition to
determine, or select, whether or not to run a
certain block of statements.

Introduced Code
if (){ // if code } else { // else code }

__ && __

__ || __

!__

file://docs.code.org/applab/ifElseBlock/
file://docs.code.org/applab/andOperator/
file://docs.code.org/applab/orOperator/
file://docs.code.org/applab/notOperator/

 Teaching Tip

Reviewing Concepts: This warm-up activity is an
excellent opportunity to review nested and chained
conditionals. You may wish to briefly remind students
what each of these is prior to the warm-up activity.
Students should verify that one another’s solutions are
valid and make proper use of chained and nested
conditionals.

Pseudocode: Students will be writing their solutions in
pseudocode, which is a useful and important skill.
Highlight that their syntax need not be perfect but that
their pseudocode should be clear and reflect the actual
programming structures they have seen.

Teaching Guide
Getting Started

Review nested and chained conditionals
Goal: Review nested and chained conditionals and reveal their shortcomings when trying to express more complex
logical statements.

Compound Conditionals worksheet - page 1
Distribute: (Just page 1 of) (Optional) Compound
Conditionals - Worksheet and ask students to work
together on the questions on the first sheet. Hold off
on distributing the rest of the worksheet, since it shows
an example solution to each of the problems from the
first page.

Discuss: Have students share their answers with their
neighbors and compare to see if they had the same
solutions. Students can use the following questions to
drive their conversations.

Is my partner’s solution correct?
Is my partner’s solution different from my own in
any way?
Are there ways we could improve our solutions?

You may wish to demonstrate possible solutions to each question, but they will also be found later on in that same
worksheet.

Transition: Nested and chained conditionals are important tools when designing boolean conditions in our programs.
In fact, every boolean condition can be expressed in some way using nesting and chained conditionals. That said,
often when we write out these solutions they are long or force us to write redundant code. Today were are going to
learn some new tools that won’t let us write any new conditions, but WILL allow us to write many complex conditions
much more clearly.

Activity

Transition to Code Studio practice using && and ||
 Transition to Code Studio:

Much like the previous lesson students will complete a series of short exercises to write code into "toy" programs to
get practice using if-else-if constructs and the logical operators AND, OR, and NOT.

NOTE: If you want to break up the lesson into a few parts - the (Optional) Compound Conditionals -
Worksheet contains many problems and activities that students can do on paper.

Using it is optional, but you might use it to reinforce concepts (or even introduce them if you like).
You don't have to use the whole thing. You may want to point students to individual pages for practice with certain
things.
You could use and re-visit it at several points during this lesson as gathering-point activities.

 Code Studio levels

https://docs.google.com/document/d/1hQay7DviSRYaVQr54ijMFgNhJNrnPt4-ASzHOxic5zM/edit?usp=sharing
https://docs.google.com/document/d/1hQay7DviSRYaVQr54ijMFgNhJNrnPt4-ASzHOxic5zM/edit?usp=sharing

Wrap-up

Review what makes logic tricky
Prompt:

"What’s the trickiest logical statement you encountered in this lesson? What made it tricky?"

We often use “and” and “or” in English in imprecise ways, or at least in ways that could have multiple meanings. In
programming logic, AND and OR have very precise meanings and they don’t always map directly to English.

*"True or False: the Boolean operators AND, OR and NOT, enable us to express boolean conditions that we couldn't
before?"

False. Anything that you can express with AND, OR and NOT, can be expressed with a chain or nesting of if-else
statements.
Certainly, it allows us to expression complex boolean conditions more succinctly, and makes our code MUCH
easier to read. But in terms of program logic, we can do everything with just if-else statements*

An example using OR

In English, we sometimes use OR in the same way it’s used in programming - to mean either or both. “Do you want
cream or sugar in your coffee?” But we often use OR to mean exactly one thing or the other, not both. “Is the
elevator going up or down?” The programming-logic answer to that question is: yes. Because it is the case that the
elevator is either going up or it’s going down.

Lesson Vocabulary & Resources 1 (click tabs to see student view)

Introduction to Conditionals: if-else-if Statements 2

(click tabs to see student view)

How "if-else-if" Works 3 4 5 6 7 (click tabs to see student view)

Introduction to Conditionals: Compound Boolean Expressions 8

(click tabs to see student view)

How the Boolean &&, || and ! Operators Work 9 10 11

(click tabs to see student view)

How Compound Boolean Expressions Work 12 13 14 15

(click tabs to see student view)

(new) AP Practice Response - Score the Response 16

(click tabs to see student view)

AND can get really tricky because in English we sometimes use the word “or” to convey a logical AND. For
example: In English you might say: “If it’s not Saturday or Sunday, then it’s a weekday.” In programming you might
express this as:

!(day=="Saturday" || day=="Sunday")

In other words: "It is not the case that the day is Saturday or Sunday"

But you might also express the same condition in code as:

(day != "Saturday" && day != "Sunday")

In other words: "It is the case that BOTH the day is not Saturday AND the day is also not Sunday."

Logic can get tricky

Because logic can get convoluted and tricky, even professionals mess it up. However, as a programmer, you can take
steps to make sure you’ve got it right by testing your code thoroughly to make sure you get expected results.

Because the boolean operators essentially take binary values (T/F) as input, you can easily figure out how many
possible inputs there are for any complex boolean expression and test them all.

For example if you have a statement like:

if (expr1 && expr2 || expr3)

there are 3 expressions there, and each can be either true or false, so there are 8 possible ways to assign true or
false to expr1 , expr2 and expr3 -- (TTT, TTF, TFT, TFF, FTT, FTF, FFT, FFF).

You can test all 8 to make sure you get the right outputs.

Create PT Prep
If you have not already, complete and review the Create PT-style question that appears at the end of the lesson.

Preview "Building an App: Color Sleuth"
You've learned to write conditional statements and boolean expressions in a variety of ways on small programs so far.
In the next lesson, you’ll have an opportunity to build an entire app from the ground up that will require to you write
if statements and come up with your own conditional expressions.

Extended Learning

Connection to logic gates in hardware These AND, OR, and NOT logic operators can be very useful in directing
the flow of your programs. They also represent a fundamental part of your computer’s hardware. Your processor uses
logic gates such as these to do computations and direct the flow of information. Remember, inside your computer,
you have electricity flowing. “true” is indicated by a high voltage and “false” is indicated by a low voltage.

AND gate: Two wires are attached to one side of an AND gate, and one is attached to the other. If both input wires
have a high voltage, the AND gate will give a high voltage to the output wire.

OR gate: Two wires are attached to one side of an OR gate, and one is attached to the other. If either input wire has
a high voltage, the OR gate will give a high voltage to the output wire.

NOT gate: One wire is attached to one side of a NOT gate, and one is attached to the other. If the input wire has a
high voltage, the output wire will have a low voltage and vice versa.

Collaborative programming

Form teams of three students.
Instruct student one to write a description of a real-life situation that requires multiple conditions.

When finished, the first student passes the description to the second student, who is tasked with drawing the
flowchart or pseudocode for the scenario.
The paper with the description and flowchart or pseudocode is then passed to a third student, who writes code for
the event. They may rely upon imaginary functions if necessary (e.g., is_raining())

Standards Alignment
Computer Science Principles

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 10: Building an App: Color Sleuth
Programming | Conditionals | App Lab

Overview
This lesson attempts to walk students through the iterative
development process of building an app (basically) from scratch
that involves the use of if statements. Following an imaginary

conversation between two characters - Alexis and Michael -
students follow the problem solving and program design decisions
they make for each step of constructing the app. Along the way
they decide when and how to break things down into functions,
and of course discuss the logic necessary to make a simple game.

The last step - writing code that executes an end-of-game
condition - students must do on their own. How they decide to use
if statements to end the game will require some creativity. The

suggested condition - first to score 10 points - is subtly tricky and
can be written many different ways.

At the conclusion of the lesson there are three practice Create PT-
style questions as well as resources explaining the connection
between this lesson and the actual Create PT. Depending on how
you use these materials they can easily add an additional day to
this lesson.

Purpose
The purpose here is for students to see how "experts" would
approach writing an app from scratch when all you have to start
out with is a sketch on paper of some idea. Research has shown
that what novices often need is an expert walk-through to explain
the rationale behind certain decisions and to see the kinds of
problems they anticipate and solve. There are a few key things
that happen in this lesson that we hope students see and take to
heart:

There is no one "correct" way to approach writing a program
You don't write programs "in order" from top to bottom - you
write in pieces and organize the code into sections and
functions.
Start with a small problem to solve - solve it and move to the
next one
Use a buddy or "thought partner" to talk things through
Sketch out pseudocode on paper to get your thoughts straight
If you get stuck, there is always something small you can do to
make progress

After this lesson students are prepared to complete the AP Create
PT. If you have more time in your year you may continue through

Objectives
Students will be able to:

Write code to implement solutions to
problems from pseudocode or description
Follow the iterative development process of
a collaboratively created program
Develop and write code for conditional
expressions to incorporate into an existing
program
Write a large program from scratch when
given directions for each step

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Color Sleuth and the AP Create PT -
AP Explanation

Color Sleuth - Rubric

Unit 5 on Code Studio

Vocabulary
Boolean Expression - in programming,
an expression that evaluates to True or
False.
Conditionals - Statements that only run
under certain conditions.
If-Statement - The common programming
structure that implements "conditional
statements".
Selection - A generic term for a type of
programming statement (usually an if-
statement) that uses a Boolean condition to
determine, or select, whether or not to run a
certain block of statements.

Introduced Code
setProperty(id, property, value)

Make a Copy

Make a Copy

https://docs.google.com/document/d/1V3fS8FKixvspuDg2WRrBCGIwWlgJQ3XVdsjremCNxTU/edit
https://docs.google.com/document/d/18aE8jpjd_gHpdrzWUgwtKAeymvtzMnEdDNk6tuJXb_0
https://studio.code.org/s/csp5
file://docs.code.org/applab/setProperty/

Unit 5 Chapter 2 before beginning the task. When you decide to
begin the task use the materials in the AP Create PT Prep unit to
further prepare students. For more details refer to pages 32 and
33 of the CSP Curriculum Guide - Teal Book.

Agenda
Getting Started

What are you worried about? Where to Start?

Activity

Transition to Code Studio

Wrap Up (15-50 mins)

Gallery Walk (Optional)
Review the Epilogue
Connections to the AP Create Performance Task
Review if statements for assessment

rgb(r, g, b, a)

https://code.org/files/CSP_CurriculumGuide_2017_forWeb.pdf
file://docs.code.org/gamelab/rgb/

Teaching Guide
Getting Started

 Remarks

In this lesson you're going to build an app from scratch, but you'll have guidance and help. The app you'll make will
require you to apply all of the skills you've learned so far:

Adding event handlers
Using variables
Breaking problems down into functions
Using if statements

In the lesson, you'll follow the path of two imaginary students - Alexis and Michael - as they walk through each of the
problems that have to get solved along the way. They'll do the thinking and problem solving, you'll write the code.

This project will mirror many of the elements of the Create PT which we'll look into more deeply at the end of the
project. At the end of this project you should know all the programming skills you'll need to complete that task.

Here is what you're going to make...

What are you worried about? Where to Start?
Show this image of the sketch mock-up of the app.

Students can also find it in code studio in the lesson introduction.

With this image on display...

Prompt:

"Looking at just this sketch of the app with its few notes about what it's supposed to do...What are
you thinking?...What are you worried about?...Are there elements of this that you're not sure you know
how to program?"

https://images.code.org/4eb59e2e07f3bb5d86c7d031274ca836-image-1480703334204.png

 Discussion
Goal

This is an informal way to do the first part of a KWL
(Know, Want-to-know, Learned) Chart. You can do a
formal one for this lesson if you think it would be helpful.

The point of the conversation here is really just to
activate students' thinking about what they do and
don't know.

For things they don't know or they're worried about you
can assure them that techniques for doing those
things are revealed in the lesson

For where they should start encourage students to
start with what they know, rather than what
they don't. A good way to make progress on an app is
start by adding things they know first since that will help
get them started.

With an elbow partner write down two things:

1. Make a quick list of things you're not sure you know how to program yet, or things you're worried
about.

2. What would be the first thing you'd try to get working? (Assume that all of the design layout is done -- what's the
first code you'd write to get things started?)

Let students discuss with their partners for a few
minutes.

Open discussion to the group: What are you worried
about? Where would you start?

Possibilities for "Worried about:"

Making random colors with code
Choosing a random button to make a different color
Knowing whether the user clicked the "right" button
or not
Switching player turns
Keeping track of whose turn it is - and the score
How does the game end?

Possibilities for "Where to start":

NOTE: almost anything is possible, encourage
students to start with things they know rather than
things they're worried about, like:
Adding event handlers for the button clicks
Adding a variable (or two) to keep score
Can they use what they know about randomNumber to generate these random colors? -- worth looking into.

Activity

Transition to Code Studio
Students can work individually or with a partner

As usual, we recommend that students at least have a coding buddy - someone they can work with and ask
questions of as they work through the exercises.
It's also reasonable to have students pair-program during this lesson, switching off writing the code at each level.

 Code Studio levels

Unit 5 Lesson 10 Introduction Teacher Overview Student Overview

file://docs.code.org/applab/randomNumber/

View on Code
StudioTeaching This Lesson

This lesson looks like it has a lot of reading. The reading should go fairly fast since it's written like a script of
two people talking.

You can think about your pause points in this lesson, where you might gather everyone to check for
understanding, or at least do a check-in with various groups.

There are a few unavoidably tricky steps in the latter half of the lesson - steps that require students to
modify or add to the code in more than one place in order to see the next thing. It's worth verifying that
students have successfully completed these before moving on.

You might also consider reading out loud some parts of the script - particularly some the tricker
decision-making points - to make sure students understand what decision was made and why.

It's also important to acknowledge along the way what's recapped in the Epilogue - that what we're walking
students through here is NOT the one true correct way to make this app. Each decision, while well-
reasoned, is relatively arbitrary.
The goal of the script is to provide a model for collaboration, thinking about problems in small pieces, and
how a process of iterative development can lead to a robust project.

Color Sleuth - Planning the App Student Overview

How Set Property Works Student Overview

Using setProperty 4 5 (click tabs to see student view)

How to pick a random button Student Overview

How to Pick a Random Button 7 (click tabs to see student view)

How to make a random color Student Overview

How to Make a Random Color 9 (click tabs to see student view)

Functions in Your Color Sleuth App 10 11 (click tabs to see student view)

U5 color sleuth check correct Student Overview

Activating Buttons 13 14 15 (click tabs to see student view)

https://studio.code.org/s/csp5/stage/10/puzzle/1

Color Sleuth - How to switch player turns Student Overview

How to Switch Player Turns 17 18 (click tabs to see student view)

Color Sleuth - Keeping score Student Overview

Updating the Score 20 21 (click tabs to see student view)

Color Sleuth - How does it end? Student Overview

View on Code
Studio

This is probably going to be the hardest level because there is the least amount of
guidance.

Also, the end game condition can be written a number of different ways. Even for a particular condition
like "first to 10" there are several different ways you could go about it. This is intentional in order to spur
actual problem solving, and encourage students to talk to each other about possible solutions.

Encourage students to: Study the pseudocode diagram from the previous page - it has the outline
of what you need to add to the code Don't forget to add a little bit and test with console.log statements *
Ask a friend for help.

Below are 3 possible ways a checkGameOver function could be written - each using a different technique of if-

statements that we learned about.

 // Nested if-statements
 function checkGameOver(){
 if(p1Score >= 10 || p2Score >= 10){ // if anyone is over 10 points the game is over
 setScreen("gameOver_screen");
 if(p1Score > p2Score){ // figure out who won and show the label
 showElement("player1Wins_label");
 } else {
 showElement("player2Wins_label");
 }
 }
 }

 // If-else-if with compound booleans
 function checkGameOver(){
 if(p1Score >= 10 && p1Score > p2Score){ // if player 1 is over 10 points and winning
 setScreen("gameOver_screen"); // game over
 showElement("player1Wins_label");
 }
 else if(p2Score >= 10 && p2Score > p1Score){ //otherwise if player 2 is over 10 points and winning
 setScreen("gameOver_screen"); // game over
 showElement("player2Wins_label");
 }
 }

 // sequential if statements
 function checkGameOver(){
 var winnerId = "player1Wins_label"; //make a variable of the label id for whoever is winning right now
 if(p2Score > p1Score){
 winnerId = "player2Wins_label";
 }
 if(p1Score >= 10 || p2Score >= 10){ // if either is over 10 points

Project: Finish Color Sleuth Teacher Overview Student Overview

https://studio.code.org/s/csp5/stage/10/puzzle/23

Wrap Up (15-50 mins)

Gallery Walk (Optional)
In theory students made some of their own personal modifications - you can do a gallery walk to share
You can also gallery walk to look at and appreciate code for the end-of-game conditions.

Review the Epilogue
The last level in code studio contains some text about the app development walk through. Students don't have to
read it, but you should review its key points about:

how and why writing code is a creative process

There is no one correct way to do things
The realistic parts of Alexis and Michael's conversation

Connections to the AP Create Performance Task
Distribute: Color Sleuth and the AP Create PT - AP Explanation (students can find a link on Level 1 of this
lesson)

 if(p1Score >= 10 || p2Score >= 10){ // if either is over 10 points
 setScreen("gameOver_screen"); // then game is over, show the label of winner
 showElement(winnerId);
 }
 }

It's worth pointing out that the solutions give above aren't quite fair because it advantages player 1 in the
case where the game is neck-and-neck: if player 1 and 2 are tied with 9 points apiece, and player 1 gets to 10
first, the code above will declare her the winner, and player 2 wouldn't have a chance to even the game up.

So, while this would be unexpected from students on a first pass -- you could add another condition to all of
these to make sure that it's player 2's turn before declaring anyone the winner. There are a number of ways to
implement this condition as well. We'll show one here:

 function checkGameOver(){
 if(currentPlayer == 2 && (p1Score >= 10 || p2Score >= 10)){
 setScreen("gameOver_screen");
 if(p1Score > p2Score){
 showElement("player1Wins_label");
 } else {
 showElement("player2Wins_label");
 }
 }
 }

View on Code
Studio

Use this epilogue as the foundation for wrap up. Either have students read it, review it
out loud.

Color Sleuth - Epilogue Teacher Overview Student Overview

(new) AP Practice Responses - Algorithms and Abstraction 25

 26 27 (click tabs to see student view)

https://studio.code.org/s/csp5/stage/10/puzzle/24
https://docs.google.com/document/d/1V3fS8FKixvspuDg2WRrBCGIwWlgJQ3XVdsjremCNxTU/edit

 Teaching Tip

Ready for the Create PT: After completing this
lesson students will have the minimum skills they need
to complete the AP Create PT. Time permitting you
should continue through Unit 5 Chapter 2 and get as far
as you can before starting the Create PT - the more
programming students have under their belts the better.

When you do opt to begin it, students should use the
materials in the AP Create PT Unit to prepare. You
can find it as a unit in the dropdown menu to assign to
your section in the teacher dashboard.

This document explains how the elements of this project, and the process, map to each requirement for the AP
Create PT.

Point out to students that if they had gone through a
similar process as Alexis and Michael that this
project basically meets the requirements of the
AP Create Performance Task. The trick would
be provide written responses that properly highlight
everything.

You could optionally have students practice writing
responses to the real AP Create Task writing
prompts using this document as a guide.

Other Create PT Options and Resources:

There are three questions (bubbles) at the end of this lesson in style of the Create PT. They use the color sleuth
project as an example as though it were submitted for the Create PT. Two questions address algorithms and one is
a refresher on abstraction.

Optionally pull out the AP Digital Portfolio Student Guide - College Board Handout so that you can have it
on hand to review the different components of the Create PT.

Optionally head over to the AP Create Task Prep Unit if you'd like to go more in depth with Create Task review
at this point.

Review if statements for assessment
The stage that follows this one is an assessment the covers if-statements. You can review the kinds of "toy" problems
that appear in the AP Assessment, many of which are similar to the kinds of problems students did in the exercises in
lessons prior to this one.

That includes the unplugged "will it crash?" exercises. You might look at those again for review.

Standards Alignment
Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

3.1 - People use computer programs to process information to gain insight and knowledge.

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

file:///tmp/studio.code.org/s/csp-create
https://secure-media.collegeboard.org/digitalServices/pdf/ap/computer-science-principles-digital-portfolio-student-guide.pdf
file:///tmp/studio.code.org/s/csp-create
http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 11: While Loops
Overview
This lesson demonstrates how a slight manipulation of a
conditional statement can allow for the creation of a new and
powerful tool in constructing programs, a while loop. Students are
introduced to a while loop by analyzing the flow chart of a
conditional statement in which the "true" branch leads back to the
original condition. Students design their own flowcharts to
represent a real-world situation that could be represented as a
while loop, and they learn how to recognize common looping
structures, most notably infinite loops. Students then move to App
Lab, creating a while loop that runs exactly some predetermined
number of times. While learning about creating while loops,
students will be introduced to many of the common mistakes early
programmers make with while loops and will be asked to debug
small programs. They finally progress to putting if statements
inside a while loop to count the number of times an event occurs
while repeating the same action. This activity will recall the need
for counter variables and foreshadows their further use in the
following lesson.

Purpose
while loops are the most primitive type of loop. The for loop, which
students used in a very basic form during turtle programming, is
just a more specific case of a while loop. while loops repeat a set
of steps until a certain condition is met. Thus, like conditional
statements, while loops use boolean expressions to determine if
they will run and how many times. One of the biggest problems a
programmer can run into with a while loop is to create an infinite
loop. There are a couple different defensive programming
strategies introduced in this lesson to help prevent infinite loops.

Agenda
Getting Started

Following a looping flowchart

Activity

(Optional) Flowcharts with while Loops
App Lab: while loops

Wrap-up

while loops exit ticket

Objectives
Students will be able to:

Explain that a while loop continues to run
while a boolean condition remains true.
Translate a real-life activity with repeated
components into a form that could be
represented by a while loop.
Analyze a while loop to determine if the
initial condition will be met, how many times
the loop will run, and if the loop will ever
terminate.
Write programs that use while loops in a
variety of contexts.

Preparation
Decide whether to use the flow charts

activity or not
Print an (Optional) Flowcharts

with While Loops - Activity Guide
for each student.

Review Levels in Code Studio

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Teacher

Activity Guide KEY - Flowcharts with
While Loops - Answer Key

For the Students

(Optional) Flowcharts with While
Loops - Activity Guide

Unit 5 on Code Studio

Vocabulary
Iterate - To repeat in order to achieve, or
get closer to, a desired goal.
while loop - a programming construct
used to repeat a set of commands (loop) as
long as (while) a boolean condition is true.

Make a Copy

https://docs.google.com/document/d/1YcOTcwqcBfEt5Cr2pFEM5mbcpJ1F3_vWgl9hb6jO1u4/edit?usp=sharing
https://studio.code.org/s/csp5/stage/11/puzzle/1/
https://docs.google.com/document/d/1YcOTcwqcBfEt5Cr2pFEM5mbcpJ1F3_vWgl9hb6jO1u4/edit?usp=sharing
https://studio.code.org/s/csp5

Introduced Code
while(){ // code }

file://docs.code.org/applab/whileBlock/

 Goal

Introduce the structure of a while loop by
demonstrating how a conditional statement that “loops”
back on itself can be used to repeatedly execute a block
of commands.

Teaching Guide
Getting Started

Following a looping flowchart
Display:

Either by writing it on the board or displaying it on a
projector, display the following flowchart. Feel free to
substitute your own example.

Prompt:

Ask students to follow the "instructions" in the diagram
and then wait quietly once they are done.

Share:

Have students share their results with one another. They should each have a sheet of paper that contains 5 tally
marks. Once they’ve shared their responses, ask them to discuss the following prompts in small groups:

How is the flowchart we just saw similar to a normal conditional (or if statement)? How is it different? How do these
differences change the results of the flowchart?

Discuss:

Once students have had an opportunity to share with their groups, open the discussion to the class. The most
significant points to draw out are:

This conditional statement loops back on itself. As a result, the conditional might be evaluated multiple times.
As a result, the same command is running multiple times.

 Transitional Remarks

The structure we just explored is called a “while loop.” When you look at the flowchart, you can see that we “loop
through” a command as long as, or “while,” a condition is true. while loops are a way we can easily represent a
process that includes many repeated steps.

Once you develop an eye for them, you'll start to notice while loops all around you. Many activities that require
repeated action are done "while" a condition is true.

Activity

https://code.org/curriculum/docs/csp/U5_flowchart_intro.png

 Teaching Tip

There is no need to get into the details of counters or
infinite loops here. Students will see them throughout
the levels, but a quick comment pointing out these two
ideas may help make connections between this activity
and what students will see in their programs.

(Optional) Flowcharts with while Loops
Remarks:

This is an optional unplugged activity. You may skip to app lab if you don't think it would be useful to you or your
students.

It may also be something to come back to after writing code to reinforce the concepts.

Distribute: (Optional) Flowcharts with While Loops - Activity Guide to each student.

Students will be reminded of the components of a flowchart and shown a couple of examples of real-life while
loops.
After determining how many times these loops will run, they will develop a real-life while loop of their own.

Share:

Once students have created their own real-life while loop, they should exchange with a partner. They should be
looking for:

Whether the while loop is properly structured
What the while loop accomplishes
How many times the while loop runs (It might not be possible to know exactly.)

Discuss:

Discuss the results of this exchange as a class, keeping the primary focus on whether everyone is properly structuring
their loops. These early activities are primarily designed to get students familiar with the structure of a while loop.
Common misconceptions include:

Writing the condition on which the while loop should stop rather than continue.
Not including steps in the while loop that will make the condition false at some point (i.e., creating an infinite loop)

The final two while loops on the worksheet are written with code and ask students to write what output that program
would generate. They will likely need to keep track of the values generated by the program on their paper, in addition
to the output. Encourage them to do so. The primary ideas foreshadowed here are:

Counters: Variables that count how many times a
while loop has run, also called iterators, can be
used to control the number of times a while loop
runs.
Infinite Loops: The final example in this activity
guide produces an “infinite loop.” This means that
the computer (or person implementing the
algorithm) will cycle through a set of commands
forever, because the while loop condition is always true. Infinite loops are almost always undesirable, but they can
be deceptively easy to create by mistake. Use the last portion of this activity to call out the fact that this is an infinite
loop, that it is a very real possibility to make one in a program, and that they will have to be careful when making
while loops since, as this example shows, it is fairly easy to create an infinite loop which prevents the rest of your
program from running.

App Lab: while loops
Now that students have some background with the structure of while loops, they will move to Code Studio where they
will program with them.

 Code Studio levels

Unit 5 Lesson 11 Introduction Teacher Overview Student Overview

https://docs.google.com/document/d/1YcOTcwqcBfEt5Cr2pFEM5mbcpJ1F3_vWgl9hb6jO1u4/edit?usp=sharing

Wrap-up

while loops exit ticket
Dicussion

Students can summarize their understanding of while loops. Students will have more opportunities to use these skills
tomorrow, so this is primarily an opportunity to make sure students have an accurate understanding of what a while
loop is and how it works.

Thinking Prompt:

"In your own words, describe how a while loop works. Explain two things to pay attention to when
creating while loops. In your response, justify why the name "while loop" accurately describes the
behavior of this new programming construct."

Discuss:

Students may discuss this question in small groups before sharing as a class. Students’ answers may vary but will
likely include:

It repeats a set of commands.
It continues to run “while” a boolean expression is true.
It is called a loop because it “loops through” a set of commands.
They may mention that visually it looks like a loop when shown in a flowchart.
Things to pay attention to when programming while loops:

Something inside the while loop has to update the variable in the condition so the while loop will stop
while loops may never run if the condition begins as false
while loops can become infinite if the condition never becomes false
Off-by-one errors are common with while loops

Standards Alignment
Computer Science Principles

3.1 - People use computer programs to process information to gain insight and knowledge.

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.2 - People write programs to execute algorithms.

5.4 - Programs are developed, maintained, and used by people for different purposes.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

View on Code
Studio

View on Code Studio to access answer key(s)

Levels 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 16 17 18 19 20 21 (click tabs to see student view)

https://studio.code.org/s/csp5/stage/11/puzzle/1
http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 12: Loops and Simulations
Overview
In this lesson, students gain more practice using while loops as
they develop a simulation that repeatedly flips coins until certain
conditions are met. The lesson begins with an unplugged activity
in which students flip a coin until they get 5 heads in total, and then
again until they get 3 heads in a row. They will then compete to
predict the highest outcome in the class for each statistic. This
activity motivates the programming component of the lesson in
which students develop a program that allows them to simulate
this experiment for higher numbers of heads and longer streaks.

Purpose
The ability to model and simulate real-world phenomena on a
computer has changed countless fields. Researchers use
simulations to predict the weather, the stock market, or the next
viral outbreak. Scientists from all disciplines increasingly rely on
computer simulation, rather than real-life experiments, to rapidly
test their hypotheses in simulated environments. Programmers
might simulate users moving across their sites to ensure they can
handle spikes in traffic, and of course videogame and virtual reality
technology is built around the ability to simulate some aspects of
the real world. The speed and scale at which simulations allow
ideas to be tested and refined has had far-reaching impact, and it
will only continue to grow in importance as computing power and
computational models improve.

Agenda
Getting Started

Coin Flipping Experiment

Activity

App Lab: Loops and Simulations

Wrap-up

Reflection

Extended Learning

Objectives
Students will be able to:

Use a while loop in a program to repeatedly
call a block of code.
Use variables, iteration, and conditional
logic within a loop to record the results of a
repeated process.
Identify instances where a simulation might
be useful to learn more about real-world
phenomena.
Develop a simulation of a simple real-world
phenomenon.

Preparation
Print a Worksheet - Flipping Coins

for each student.
A coin for every student or pair of

students.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Worksheet - Flipping Coins

Unit 5 on Code Studio

Vocabulary
Models and Simulations - a program
which replicates or mimics key features of a
real world event in order to investigate its
behavior without the cost, time, or danger of
running an experiment in real life.

Make a Copy

https://docs.google.com/document/d/1xLzpruWj1foU23cVDGAcq7WoH_QCvAbSGpT-QT5tp0s/edit?usp=sharing
https://docs.google.com/document/d/1xLzpruWj1foU23cVDGAcq7WoH_QCvAbSGpT-QT5tp0s/edit?usp=sharing
https://studio.code.org/s/csp5

 Goal

Run a simple experiment by hand that it would be
unmanageable to run on a larger scale, thus motivating
the need to simulate it on a computer.

Teaching Guide
Getting Started

Coin Flipping Experiment
Insructions:

Flip a coin until you get 5 total heads. Then again until you get 3 heads in a row. Record your results
and predict the highest result in the class.

Distribute: Worksheet - Flipping Coins and give
each student / pair of students a coin.

Prompt:

"We’re going to run two simple experiments.
Use your worksheets to keep track of your
results (by writing “H” or “T” for each flip)
but keep them a secret for now."

Experiment 1: Groups will flip their coins as many times as it takes in order to get 5 heads total

Experiment 2: Groups will flip their coins as many times as it takes to get 3 heads in a row

Prompt:

"Let’s have a little competition. You should have recorded your results for your two experiments.
Based on your experiment, predict, among every group in the class the most and fewest flips
needed to complete each of the experiments."

Compare Results:

Collect worksheets (or just have students share answers) to determine how accurate guesses were. Perhaps offer
small prizes for the group whose guesses were most accurate.

 Transitional Remarks

That was pretty interesting with only 5 total heads or a streak of 3 heads. If we want to run this experiments for
higher numbers of heads or longer streaks of heads however, we’ll quickly find that it’s tedious to do once, let alone
many times. Luckily we know now that we can use loops to repeatedly perform commands, so we’re going to
simulate these larger experiments instead.

Activity

App Lab: Loops and Simulations
Develop a simulation in App Lab that allows you conduct the experiments from the warm-up with many more coins.
Repeat the warm-up activity using the simulation and update hypotheses as a result.

 Code Studio levels

Unit 5 Lesson 12 Introduction Teacher Overview Student Overview

https://docs.google.com/document/d/1xLzpruWj1foU23cVDGAcq7WoH_QCvAbSGpT-QT5tp0s/edit?usp=sharing

View on Code
Studio

The series of problems and tasks in this lesson progressively build up a series of
experiments that simulate coin flipping.

We ask students to make a hypothesis, then experiment with code, revise the hypothesis and so on,
around some question. Below are some guidelines about what students should find.

Insights: The following insights should arise from this experiment:

Total Heads: When trying to flip 5 heads, it is quite possible that it will only take 5 flips, but it may also
easily take 15 or 20. Relative to the number of heads you are looking for, this is a massive range! When
you are trying to flip 10,000 heads the likely range is typically between 19,000 and 21,000, and typically
much closer. As you are looking for more flips, the relative width of the likely window shrinks.

Longest Streak: When trying to find a streak of 3 heads it will typically take between 3 (it's always
possible!) and 20 flips, though of course it may take longer. Even slightly longer streaks of heads, however,
will rapidly increase the average time it takes to find that streak. Looking for a streak of 12 heads might
occasionally happen in fewer than 100 flips, but it can also easily take tens of thousands. As the length of
the streak increases, the number of flips it takes to find that streak grows rapidly.

How Much Math is Necessary?

This lesson might seem to naturally lend itself to a more detailed discussion of the mathematical properties of
random experiments. Flipping coins is, after all, perhaps the most classic example of a random experiment.

The goal of this lesson is not for students to walk away knowing the precise mathematical relationship
between the number of coins flipped and the number of heads observed or the longest streak of heads.
Instead they are supposed to appreciate that questions that might be impossible or hard to
address by hand are possible to examine by using computer simulation. Just as developing a
mathematical model is one way to address a problem, so too is developing a simulation.

There's no need to dive deep into the mathematics this lesson touches on, but students should be
able to describe the patterns they observed while running their simulations, and use those observations to
justify new hypotheses.

View on Code
StudioPause Point - Make a Hypothesis

Use this level to describe the fact that students will be making a simulation of flipping coins.
Ask them to make a prediction for the outcomes of the experiments they will run.

Make sure students make this prediction before moving on.

Students should record their predictions in the space provided on their worksheets.

Make a Hypothesis Teacher Overview Student Overview

Levels 3 4 5 6 (click tabs to see student view)

Update your Hypothesis - Part 1 Student Overview

Levels 8 9 10 (click tabs to see student view)

https://studio.code.org/s/csp5/stage/12/puzzle/1
https://studio.code.org/s/csp5/stage/12/puzzle/2

Wrap-up

Reflection
Prompt

"Update your hypothesis based on the results of your simulation and predict the outcomes of an
even larger experiment using the new knowledge you have gained."

On the second part of their worksheets, students are asked to extend their hypotheses to try to predict how long
it might take to flip 10,000,000 heads or find a streak of 20 heads. Even for a computer, these could take a great
deal of time to run, but luckily students should have developed intuitions about these problems based on their
earlier simulations.

Their actual predictions are less important than whether they demonstrate having reflected on the outcomes of
the earlier simulation.

Discuss:

Once students have finished writing their predictions for these problems, they should present their predictions and
their reasons for making them with their classmates.
Discuss whether and how the results of their earlier simulation impacted their new hypotheses.

 Conclusion

Not all problems are as easy to simulate as a coin flip of course, and we’ve even seen how some problems we can
simulate still take a very long time to run.

Simulations are an increasingly important tool for a variety of disciplines. Weather and traffic predictions are based
on computer models that simulate weather patterns or people moving through a city. Scientific research, whether in
physics, chemistry, or biology, increasingly uses simulations to develop new hypotheses and test ideas before
spending the time and money to run a live experiment.

Before you use most of your favorite websites and apps, they will be tested by simulating high levels of traffic
moving across the server. Simulations take advantage of computers’ amazing speed and ability to run repeated
tasks, as we’ve seen through our exploration of the while loop, in order to help us learn more about the world around
us.

As computers get ever faster and models improve, we are able to answer old questions more quickly and start
asking new ones.

Extended Learning

Extend this activity to new statistics, rolling dice, etc. Use these both as opportunities to practice programming and
to develop the habit of using simulations to refine hypotheses.

How long does it take for the number of heads and tails flipped to be equal?
Longest streak where each roll is greater than or equal to the last
Longest streak made of only five (any five) of the six faces on the die (i.e., not equal to the other)

Standards Alignment
Computer Science Principles

Update your Hypothesis - Part 2 Student Overview

Levels 12 (click tabs to see student view)

2.3 - Models and simulations use abstraction to generate new understanding and knowledge.

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 13: Introduction to Arrays
Overview
This lesson introduces arrays as a means of storing lists of
information within a program. The class begins by highlighting the
difficulties that arise when trying to store lists of information in a
variable. Students then watch a short video introducing arrays and
a subset of the operations that can be performed with them.
Students will work in Code Studio for the remainder of the class as
they practice using arrays in their programs. At the conclusion of
the sequence, students build a simple app which can be used to
store and cycle through a list of their favorite things. In the next
lesson, students will continue working with a version of this app
that can display images and not just text strings.

Purpose
Some sort of list data structure is a component of almost all
programming languages. A list allows large amounts of information
to be easily referenced and passed around a program, and the use
of a numeric index allows individual items in a list to be accessed.
Historically a list would have literally been a single contiguous
chunk of memory and the index or address was used to know how
far into that chunk a relevant piece of information was stored. In
many modern languages, however, it is more likely that the items
in an array are stored at many locations on your computer’s hard
drive, and the index is only useful to help the programmer identify
different components. In this way, a JavaScript array is actually
another example of abstraction. We know that it is holding a list of
related information, but we don’t need to think about the actual
implementation details.

Agenda
Getting Started

Prompt: What makes lists useful in everyday life?
Transition: Variables are a bad way to store lists.

Activity

App Lab: Introduction to Arrays

Wrap-up

Reflection: When to use a variable and when to use
an array

Extended Learning

Objectives
Students will be able to:

Identify an array as a data structure used to
store lists of information in programs.
Create arrays and access information
stored within them using an index.
Manipulate an array using the append,
insert, and remove operations.
Account for the fact that JavaScript arrays
are zero-indexed when using them in a
program.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Unit 5 on Code Studio

Vocabulary
Array - A data structure in JavaScript used
to represent a list.
List - A generic term for a programming
data structure that holds multiple items.

Introduced Code
list.length

insertItem(list, index, item)

var list = ["a","b","d"];

var x = [1,2,3,4];

appendItem(list, item)

removeItem(list, index)

https://studio.code.org/s/csp5
file://docs.code.org/applab/listLength/
file://docs.code.org/applab/insertItem/
file://docs.code.org/applab/declareAssign_list_abd/
file://docs.code.org/applab/declareAssign_x_array_1_4/
file://docs.code.org/applab/appendItem/
file://docs.code.org/applab/removeItem/

 Goal

Demonstrate that lists are a desirable feature of a
programming language and that using variables to store
lists is cumbersome or impossible. Motivate the need
for arrays.

Teaching Guide
Getting Started

Prompt: What makes lists useful in everyday life?
Thinking Prompt:

"Today we’re going to start looking at how
we can use lists in programs, but before we
dive into that, let’s think about why we
would want to in the first place. What are the
benefits of creating lists? Why is it helpful to
keep information in lists?"

Discuss:

Students may discuss in small groups or you can just ask for ideas from the class. Potential answers include:

Lists help us organize information.
Lists help us collect all the relevant information in one place.
Lists show that a lot of ideas are related.
Lists help us order or prioritize ideas.
Lists help us think about the big picture.

Transition: Variables are a bad way to store lists.
 Transitional Remarks

There are a lot of benefits to keeping lists of information in real life. Since we use programming to solve a lot of
similar problems, we would like to keep lists of information in our programs, too.

Right now, the only way we know how to store information in our programs is with a variable, but each variable can
only store a single piece of information.

Today we’ll be learning about a new programming construct that will allow us to hold as many pieces of information
as we want within a single list.

Activity

App Lab: Introduction to Arrays
This set of levels looks long, but all the problems are relatively short and small.

You might consider watching the first video as a whole class before diving in.

 Code Studio levels

Unit 5 Lesson 13 Introduction Student Overview

Introduction to Lists - Part 1 Student Overview

Levels 3 4 (click tabs to see student view)

Wrap-up

Reflection: When to use a variable and when to use an array
Goal: Students now know how to store information in both variables and arrays. Help students synthesize their new
knowledge by trying to develop a rule for when to use a variable vs. an array. This is also just a useful way to assess
students’ understanding of arrays at the conclusion of the lesson.

Thinking Prompt (Also in Code Studio)

1. Your app needs to store the following information. Decide whether you would use an array or a variable to store
it?

1. All the messages a user has sent
2. The highest score a user has ever reached on the app
3. A username and password to unlock the app

2. In general, when do you think you should you store information in an array, and when should you use a variable?

Discuss: You can use these questions as an exit ticket, but it is probably even more useful to discuss as a class. Use
this discussion to possibly identify and address any misconceptions about what an array is and how it stores
information. Here are some key points to pull out:

Variables store single pieces of information, while arrays store many.
An array can grow in size to accommodate more information.
Arrays are slightly more complex to use than variables. If you are only going to be storing a small and fixed amount
of information, it is probably appropriate to use multiple variables.

Conclusion:

 Remarks

We are going to keep exploring arrays in the coming lessons. Keep your eye out for some of the distinctions we just
discussed, and keep thinking about how you might want to use arrays in applications of your own.

Extended Learning

Introduction to Lists - Part 2 Student Overview

Levels 6 7 (click tabs to see student view)

Introduction to Lists - Part 3 Student Overview

Levels 9 10 11 12 13 14 15 (click tabs to see student view)

Introduction to Lists - Part 4 Student Overview

Levels 17 18 19 20 21 22 23 24 25 26

 27 28 29 30 31 (click tabs to see student view)

One of the last levels in App Lab challenges students to keep developing the app. If you wish, you may also have
students submit these projects.

Standards Alignment
Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 14: Building an App: Image
Scroller
Overview
Students will extend the My Favorite Things app they built in the
previous lesson so that it now manages and displays a collection of
images and responds to key events. Students are introduced to
the practice of refactoring code in order to keep programs
consistent and remove redundancies when adding new
functionality. As part of learning to use key events, students are
shown that event handlers pass a parameter which contains
additional information about the event. This lesson also serves as
further practice at using arrays in programs.

Purpose
Most applications you use are not based on static pieces of code.
Instead the software will be continuously updated both to correct
errors and introduce new pieces of functionality. If later
improvements are anticipated it is generally possible to develop
programs in a way that easily incorporates new functionality. At
other times it is necessary to make larger changes to the way a
program operates in order to incorporate new features while
maintaining existing functionality. Refactoring code in this way can
be a tedious and challenging endeavor, but it helps ensure that the
final product is consistent and easy to maintain. If software is not
kept in a logical, consistent, and succinct form, then it will only get
harder to keep introducing new features, increasing the likelihood
of errors.

Agenda
Getting Started

Refactoring and re-writing code

Activity

App Lab: Building an App - Image Scroller

Wrap-up

Reflection: When to refactor

Objectives
Students will be able to:

Use an array to maintain a collection of
data in a program.
Create apps that allow user interaction
through key events.
Refactor code in order to appropriately
incorporate new functionality while
maintaining readability and consistency.

Vocabulary
Key Event - in JavaScript an event
triggered by pressing or releasing a key on
the keyboard. For example: "keyup" and
"keydown" are event types you can specify.
Use event.key - from the "event" parameter
of the onEvent callback function - to figure
out which key was pressed.

Introduced Code
onEvent(id, type, function(event)){ ... }

setImageURL(id, url);

playSound(url)

file://docs.code.org/applab/onEvent/
file://docs.code.org/applab/setImageURL/
file://docs.code.org/applab/playSound/

 Goal

Students should reflect on why adding new functionality
to their programs might mean they need to makes
changes to the old code they wrote as well.

Teaching Guide
Getting Started

Refactoring and re-writing code
Thinking Prompt:

"When we want to add new functionality to
our programs, we'll of course have to write
new code. Sometimes, when we add new
code to an existing program, we’ll also have
to make changes to the original components
of our program. Why might this be the case?"

Discuss:

Students may discuss in small groups or you can just ask for ideas from the class. Potential answers include

The old code and the new code contradict one another.
The old code and the new code may have redundant components.
Incorporating the new code may help us find better ways to write the old code.

 Transitional Remarks

Writing software is an iterative process. We continuously update and improve our ideas as we learn new
techniques, debug our software, or identify new features we’d like to add to our code. While our code will constantly
be changing, we’d like it to remain organized, consistent, and readable. As a result, when we add new code to our
programs, we may sometimes need to change the way we originally approached a problem.

Today we’re going to be further extending our My Favorite Things app, and seeing how this process plays out in
practice.

Activity

App Lab: Building an App - Image Scroller

 Code Studio levels

Unit 5 Lesson 14 Introduction Teacher Overview Student Overview

 Goal

Reflect on the process of making improvements to
existing code, how to do it well, and how to avoid having
to do it too frequently.

Wrap-up

Reflection: When to refactor
Thinking Prompt:

"In today’s activity, we needed to make
some changes to our programs in order to
incorporate new functionality. Sometimes
this meant we needed to make changes to
our old code as well."

Why might you want to change or refactor old code?

Is it necessarily a bad thing to refactor code?
What steps can we take to avoid refactoring code too frequently?

Discuss:

You can use these questions as an exit ticket, but it is probably even more useful to discuss as a class. Use this
discussion to identify and address misconceptions about what refactoring code is and why we would want to do it.
Here are some key points to pull out:

Refactoring is the process of changing the way we wrote old code in order to keep programs consistent and

View on Code
StudioNotes about this lesson

There are two major things happening in this lesson

1. Using the event parameter from onEvent to determine which key was pressed.

2. Modifying the "My Favority Things" Apps made in the last lesson

Helping Students with Incomplete "My Favorite Things" Apps :

It is quite possible that some of your students will not have succeeded in creating the text version of the My
Favorite Things app. Since this lesson asks students to extend that project, it might be a challenge for
those students to participate. Some strategies are below.

Let students continue working on the text version of their app. While this lesson introduces new event
types, it falls in a sequence focused on arrays. Students can still participate in discussions about
refactoring code and will be exposed to the new key events.

Provide students the exemplar version of the text-based My Favorite Things app. They can Remix
the project and work on it in Free Play mode (i.e., outside of the curriculum). This way, they have a clean
starting point and focus on the content of the lesson. If they wish, students can copy the code into Code
Studio and will only need to create the UI elements themselves.

My Favorite Things Exemplar

Levels 2 3 4 5 6 7 8 9 (click tabs to see student view)

Project - Final Image Scroller Student Overview

Levels 11 (click tabs to see student view)

https://studio.code.org/s/csp5/stage/14/puzzle/1
file://docs.code.org/applab/onEvent/
https://levelbuilder-studio.code.org/projects/applab/crEIVQmJhiqUgJOEPmy8Eg/view

readable while incorporating new functionality.
It is possible that refactoring code will not change the user’s experience but will make the program easier to read
and maintain.
Refactoring is a useful process, but it can be time consuming and challenging. We’d ideally not refactor code very
often but it is sometimes necessary.
Good planning and design can help avoid refactoring. Good use of functions and an organized program means that
at the very least we limit areas that need to be changed.

Standards Alignment
Computer Science Principles

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.2 - People write programs to execute algorithms.

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 15: Processing Arrays
Unplugged | App Lab

Overview
This lesson will probably take two days to complete. It introduces
students to algorithms that process lists of data. The students will
do two unplugged activities related to algorithms and program
some of them themselves in App Lab. The for loop is re-
introduced to implement these algorithms because it’s
straightforward to use to process all the elements of a list. The
lesson begins with an unplugged activity in which students write
an algorithm to find the minimum value in a hand of cards.
Students then move to Code Studio to write programs that use
loops and arrays. Students are shown how to use a for loop to
visit every element in an array. Students use this pattern to
process an array in increasingly complex ways. At the end of the
progression, students will write functions which process arrays to
find or alter information, including finding the minimum value - a
problem they worked on in the unplugged activity. Finally, an
unplugged activity has students reason about linear vs. binary
search and attempt to write pseudocode for a binary search.

Purpose
There are many situations where we want to repeat a section of
code a predetermined number of times. Although this can be done
with a while loop by maintaining a variable to keep track of how
many times the loop has executed, there are many small pieces to
keep track of. The for loop consolidates all of those pieces -
counter variable, incrementing, and boolean condition - onto one
line. One of the most common uses of for loops in programming is
to process arrays. for loops allow programmers to easily step
through all the elements in an array. This basic pattern is at the
core of many algorithms used to process a list of items. Whether
you are looking to find a name in a list, find the closest store to
your current location, or compute the total money in your account
based on past transactions, a loop will probably be used at some
point to access all the elements in a list.

Agenda
Getting Started (15 minutes)

Recall: Minimum Card Algorithm
Teacher Reference: Min Card Sample Algorithms

Activity (30 minutes)

App Lab: Processing Arrays

Activity 2

Objectives
Students will be able to:

Use a for loop in a program to implement
an algorithm that processes all elements of
an array.
Write code that implements a linear search
on an unsorted array of numbers.
Write code to find the minimum value in an
unsorted list of numbers.
Explain how binary search is more efficient
than linear search but can only be used on
sorted lists.

Preparation
Print Activity Guide - Minimum Card

Algorithm - Activity Guide
Print Activity Guide - Card Search

Algorithm - Activity Guide for each
student.

Playing cards (or pieces of paper with
numbers on one side).

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Activity Guide - Minimum Card
Algorithm - Activity Guide

Activity Guide - Card Search
Algorithm - Activity Guide

Unit 5 on Code Studio

Vocabulary
for loop - A typical looping construct
designed to make it easy to repeat a
section of code using a counter variable.
The for loop combines the creation of a

Make a Copy

Make a Copy

https://docs.google.com/document/d/1Ca6NTpGxXjuHH6jyUy4wBPZiXa0Gq7gXo0WMvAGa890/edit?usp=sharing
https://docs.google.com/document/d/1E9-zQnZFMA_-moSx_6fBEsszO1pK-EqCo15T6OJzbyY/edit?usp=sharing
https://docs.google.com/document/d/1Ca6NTpGxXjuHH6jyUy4wBPZiXa0Gq7gXo0WMvAGa890/edit?usp=sharing
https://docs.google.com/document/d/1E9-zQnZFMA_-moSx_6fBEsszO1pK-EqCo15T6OJzbyY/edit?usp=sharing
https://studio.code.org/s/csp5

Unplugged Activity: Card Search Algorithm

Wrap-up (10 minutes)

Reflection: Processing sorted arrays and binary
search

variable, a boolean looping condition, and
an update to the variable in one statement.

Introduced Code
for(var i=0; i<4; i++){ //code }

function myFunction(n){ //code }

file://docs.code.org/applab/forLoop_i_0_4/
file://docs.code.org/applab/functionParams_n/

 Teaching Tip

Students might want help with language as they write
out their algorithms. In particular, they might recognize
that trying to clearly articulate which hands to use to
pick up which cards is challenging. It’s good if they
recognize this. Here are some suggestions you can
make:

You may refer to the “first” and “last” cards in the row
as part of your instructions.
You may also give an instruction to move a hand
some number of cards (or positions) to the left or
right.
You can give an instruction to put a card down on
the table in one of the open positions, or put it back
where it was originally picked up from.

Here are two examples of algorithms students might
write. These are not the “correct answers” per se - there
are many ways students might go about it - but they
should give you the gist of what you might be looking
for.

Teaching Guide
Getting Started (15 minutes)

Recall: Minimum Card
Algorithm
Introduce students to thinking about processing lists of
information by recalling the FindMin problem they
wrote an algorithm for in Unit 3 Lesson 2

In particular, introduce the common pattern of using a
loop to visit every element in a list, rather than the
jump command.

Opening:

 Remarks

Remember in a lesson a while back when we wrote
algorithms for playing cards using the "Human
Machine Language"?

Notice how a row of cards is kind of like a list.

Today we’re going to begin to write code to process
lists of data. Processing large lists of data is one of
the most powerful things computer programs can do.
Many of the most important algorithms in computer
science have their roots in processing lists of data.

So as a warm-up today, lets think back to algorithms
that process lists with a short activity.

Distribute: Activity Guide - Minimum Card Algorithm - Activity Guide

Setup:

Put students in pairs or small groups.
Students should:

Read the instructions (or you might want to read out loud as a class).
Write their algorithm out on paper and test it out with each other (or possibly other groups).

Test it out with other groups, or demonstrate one.

Teacher Reference: Min Card Sample Algorithms
For your reference here are some plain English Algorithms

SAMPLE ALGORITHM 1 (using a numbered list of instructions):

1. Put your left hand on the first card in the row and your right hand on the card next to it.
2. Pick up the card your left hand is on.
3. Pick up the card your right hand is on.
4. IF the card in your right hand is less than the card in your left hand,
5. THEN swap the cards (so the smaller one is in your left hand).
6. Put the card in your right hand back down on the table.
7. IF there is another card in the row to the right of your right hand,
8. THEN move your right hand one position to the right, and go back and repeat step 3 (with your right hand now on a new card).
9. OTHERWISE: say “I found it!” and hold the card in your left hand up in the air.

Since we have learned about loops in the course, your students might write pseudocode with a loop construct in it.

SAMPLE ALGORITHM 2 (using a loop construct):

https://curriculum.code.org/csp/unit3/2/
https://docs.google.com/document/d/1Ca6NTpGxXjuHH6jyUy4wBPZiXa0Gq7gXo0WMvAGa890/edit?usp=sharing

 Teaching Tip

In terms of pacing, the unplugged Activity Guide -
Card Search Algorithm - Activity Guide could be
done on a second day of class. It’s also likely that
students will not finish all of the Code Studio levels for
the lesson by the end of the first day, but you do not
have to wait for every student to complete every level to
run it. It’s reasonable to be done at any point after
students have gotten halfway through the Code Studio
levels (basically, after they’ve written code for linear
search).

You might elect to use the next activity as a getting
started activity on day 2 if most students are halfway
through.

Pick up the first card in your left hand.
FOR EACH card IN the row of cards (ALTERNATIVE: WHILE there are more cards in the row)
 Pick up the next card with your right hand.
 IF the card in your right hand is less than the card in your left hand,
 THEN swap the cards (so the smaller one is in your left hand).
 Put the (larger) card in your right hand back down on the table.
(after the loop) Say “I found it!” and hold the card in your left hand up in the air.

 Transitional Remarks

The same kind of thinking that went into designing this algorithms can be applied to making working code as well.

Don't confuse thinking about the algorithm with actually writing code.

Today you'll get some practice writing code with loops and if-statements to process a list - skills that will help you
write your own algorithms for lists.

Activity (30 minutes)

App Lab: Processing Arrays

 Code Studio levels

Activity 2

Unplugged Activity: Card
Search Algorithm
In the lesson students programmed linear search
(scan all the values in the list from beginning to end
until you find what you’re looking for). “Binary search”
uses a different algorithm, that is faster, but requires
that the list be in sorted order ahead of time - linear
search will work for any list. Demonstrate why this
algorithm can only be performed on sorted arrays and
justify the fact that it is faster.

Distribute: Activity Guide - Card Search
Algorithm - Activity Guide

Note: The wrap-up for this whole lesson focuses primarily on the outcomes from the Card Search activity.

Wrap-up (10 minutes)

Unit 5 Lesson 15 Introduction Student Overview

Processing Lists with Loops Student Overview

Levels 3 4 5 6 7 8 9 10 11 12 13

 14 15 (click tabs to see student view)

https://docs.google.com/document/d/1E9-zQnZFMA_-moSx_6fBEsszO1pK-EqCo15T6OJzbyY/edit?usp=sharing
https://docs.google.com/document/d/1E9-zQnZFMA_-moSx_6fBEsszO1pK-EqCo15T6OJzbyY/edit?usp=sharing

 Goal

The only algorithms the CSP framework mentioned by
name are “linear search” and “binary search.” Students
should be able to reason about an algorithm’s
“efficiency.” Students should understand the connection
(and differences) between designing an algorithm and
actually writing (implementing) the algorithm in code.

Reflection: Processing sorted arrays and binary search
 Remarks

When you talk about how “long” or how much “time”
an algorithm takes to run, time is usually a measure
of the number of operations a computer needs to
perform to complete the task. You can measure the
amount of time it takes to run an algorithm on a
clock, but it’s often not a useful measure, because
the speed of the computer hardware obscures
whether the algorithm is good or not.

There are several essential knowledge statements from the framework that directly tie to information about
algorithms, efficiency and linear vs. binary search, and which we’ll use in the wrap-up.

Activity:

Give each pair of students one of the 5 statements (D,E,F,G,H) listed below, which are taken directly from the CSP
Framework under “4.2.4 Evaluate algorithms analytically and empirically for efficiency, correctness, and clarity. [P4]”

Ask the pair to come up with a brief (60 second) explanation of that statement and relate it to something they
experienced as part of this lesson.
Give students 3 minutes to think and discuss.
Do a whip-around, or put pairs together, or group by statement, and

Have each pair read the statement out loud.
Given their explanation of what it means.

4.2.4D Different correct algorithms for the same problem can have different efficiencies. Both linear
search and binary search solve the same problem, but they have different efficiencies.

4.2.4E Sometimes more efficient algorithms are more complex. Binary search is more efficient than
linear search, but even though it might be easy to understand at a high level, it is much more
challenging to write code for.

4.2.4F Finding an efficient algorithm for a problem can help solve larger instances of the problem. The
algorithms we wrote work for any size input.

4.2.4G Efficiency includes both execution time and memory usage. Execution “time” here means
number of operations that need to be performed in the worst case.

4.2.4H Linear search can be used when searching for an item in any list; binary search can be used
only when the list is sorted. Emphasis should be placed on the fact that binary search only works when
the list is sorted. It’s a fact often forgotten.

Standards Alignment
Computer Science Principles

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

4.2 - Algorithms can solve many but not all computational problems.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 16: Functions with Return Values
Overview
In this lesson students are introduced to the return command and
learn to write their own functions that return values. Students first
complete a simple unplugged activity based on the game Go Fish
to introduce the concept of a return value. They will then complete
a short sequence of exercises in Code Studio, which introduces
preferred patterns for writing functions that return values. At the
end of the sequence, students write and use functions that return
values in a simple turtle driver app.

Purpose
The ability to return values is closely tied to the concept of scope.
All variables declared within a function are in local scope and so
will be removed once the end of the function is reached. As a
result any useful information generated during that function will be
lost. One solution to this problem is storing the value in a global
variable, but this is generally considered bad programming
practice. Global variables can be accessed by many functions and
so reasoning about their logic requires considering the logic of all
of those functions. Return values are a way to move information
out of the local scope of a function without using a global variable.
As a result a function call can be treated as if it were the type of
data that a function returns, and it is up to the programmer to
determine if or how it will be used.

Agenda
Getting Started (20 minutes)

Unplugged Activity: Return Values with Go Fish

Activity (25 minutes)

App Lab: Functions with Return Values

Wrap-up (5 minutes)

Exit ticket: Function with Returns vs. Functions
without Returns

Objectives
Students will be able to:

Use the return command to design
functions.
Identify instances when a function with a
return value can be used to contain
frequently used computations within a
program.
Design functions that return values to
perform frequently needed computations
within a program.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Activity Guide - Return Values with
Go Fish - Activity Guide

Unit 5 on Code Studio

Vocabulary
Return Value - A value sent back by a
function to the place in the code where the
function was called form - typically asking
for value (e.g. getText(id)) or the result of a
calculation or computation of some kind.
Most programming languages have many
built-in functions that return values, but you
can also write your own.

Introduced Code
return

Make a Copy

https://docs.google.com/document/d/1rGKhRhH5pzJJfYBa_tZy96-bg-SWgSbf_nomluTl18U/edit?usp=sharing
https://studio.code.org/s/csp5
file://docs.code.org/applab/return/

 Goal

Introduce the idea of a function with a return value as a
process in which a question is asked, something
computes an answer and gives the answer back to the
asking location. We are looking to draw out the need for
some way to share the information between the two
parts of the program.

Teaching Guide
Getting Started (20 minutes)

Unplugged Activity: Return Values with Go Fish
Opening:

 Remarks

Today we are going to look at how to write our own
functions with return values. We are going to explore
this idea by playing the classic card game Go Fish.

Distribute: Activity Guide - Return Values with
Go Fish - Activity Guide

Break students into groups of 4 with a set of cards.
Give each student a copy of the worksheet.
Each group should play a couple rounds of Go Fish with their team.

They do not need to finish the game to get the point here.
Students should complete the worksheet together as a group.

Share:

Have students share their algorithms for the Responder.

The main goal here is for students to talk about the parameters for the function, the algorithm used in the function
and, most important, the information that needs to be returned at the end of the function.

Discussion Prompt:

"Why do we need to return some information from the Responder to the Asker?"

The main thing to draw out:

Once the asker has gained the information, he uses it to continue computing information.
The asker can not easily gain the information without the help of the responder, as he doesn’t have access to the
cards.

 Transitional Remarks

As we saw playing Go Fish, we often need to ask for information and receive an answer to be able to make
decisions. We have seen a few different functions that do something like this, such as randomNumber, getText,
and includes. Up until now, though, we have never been able to create our own functions that return information.
Today we are going to learn how to write functions with return values.

Activity (25 minutes)

App Lab: Functions with Return Values

https://docs.google.com/document/d/1rGKhRhH5pzJJfYBa_tZy96-bg-SWgSbf_nomluTl18U/edit?usp=sharing

 Teaching Tip

Students’ algorithms will vary. An example of what they
might create is: function responder(desiredCard)

var gaveCard = false
for each card in responder’s hand

if card is equal to desiredCard
gaveCard = true
RETURN card

if gaveCard is false
RETURN “Go Fish”

Although technically this first example is not how you
would write this with code, as the return statement
would cause you to leave the function, it gets across the
main understanding we are working towards.Therefore,
it is a completely correct way for students to be thinking
at this point. You should not feel the need to correct this
understanding before students work on the levels, but if
you are wondering about more correct versions of this
algorithm, check out below. A more correct version of
this algorithm would be: function
responder(desiredCard)

var cardsToGive = []
for each card in responder’s hand

if card is equal to desiredCard
add card to cardsToGive list

if cardsToGive length is 0
RETURN “Go Fish”

else
RETURN cardsToGive

The above algorithm is good, as it will return at the end
of the computation and therefore could be something
you could use to translate into code. However, it is
usually best practice to always return the same type of
information. “Go Fish” is a string, whereas cardsToGive
is an array.

Even better would be:

function responder(desiredCard)

var cardsToGive = []
for each card in responder’s hand

if card is equal to desiredCard
add card to cardsToGive list

RETURN cardsToGive

 Code Studio levels

View on Code
Studio

View on Code Studio to access answer key(s)

Unit 5 Lesson 16 Introduction Teacher Overview Student Overview

https://studio.code.org/s/csp5/stage/16/puzzle/1

 Goal

Highlight the benefits of using a function that returns a
value, in particular the fact that it makes it much easier
to reason about a program.

Wrap-up (5 minutes)

Exit ticket: Function with Returns vs. Functions without Returns
 Remarks

Return values are a useful way to move useful
information generated inside of a function to the rest
of your program. There is another way we can do
this. If we write our function so that it stores its
output within a global variable, then that information
will be accessible when the function terminates,
since the global variable will stay in scope.

Prompt:

"Why would we prefer to write a function that returns a value to using the strategy shown above?
How might return values make our function more generally useful? How might they make our code
easier to reason about?"

Discuss:

Ask students to share their responses to this question. They may need to be reminded about the concept of variable
scope. The primary points to pull out are:

A function that saves output in a global variable must specifically reference that variable by name. Since that name
is “hard-coded,” your function can only ever save information in that variable. If we wish for our functions to be
generally useful, we should be able to decide how to use the output a function generates.
A global variable is accessible by all functions. As a result, it can be difficult to determine every location in your
program that modifies this variable. Reasoning about how its value will change over the course of the program is
much harder, as is debugging unexpected behavior. Using a return value limits the effects of a function to the local
variables of the function and the place where the function was called.

Standards Alignment
Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.5 - Programming uses mathematical and logical concepts.

Using Output from Functions: The return Command
Student Overview

Levels 3 4 5 6 7 8 (click tabs to see student view)

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 17: Building an App: Canvas
Painter
Overview
Students continue to practice working with arrays and are
introduced to a new user interface element, the canvas. The
canvas includes commands for drawing simple geometric shapes
(circles, rectangles, lines) and also triggers mouse and key events
like any other user interface element. Over the course of the
lesson, students combine these features to make an app that
allows a user to draw an image while recording every dot drawn on
the canvas in an array. By processing this array in different ways,
the app will allow students to redraw their image in different styles,
like random, spray paint, and sketching. Along the way, students
use their knowledge of functions with return values to make code
which is easy to manage and reuse.

Purpose
The study of computing is in many ways the study of information
and the automation of processes to transmit, transform, and learn
from that information. The combination of list data structures, like
the JavaScript array, and loops allows for large amounts of
information to be generated, maintained, and then transformed in
useful and interesting ways. The patterns used to perform these
processes are frequently quite similar, even across disciplines. By
recognizing when and how to use arrays and loops to store and
process information, a programmer can quickly solve problems
and create things at a scale unimaginable without the power of
computing.

Agenda
Getting Started

Introduction to Activity

Activity

App Lab: Building an App - Canvas Painter

Wrap-up

Share any additional features added to your app.
Brainstorm other effects that could be created.

Objectives
Students will be able to:

Programmatically control the canvas
element in response to user interactions.
Maintain a dynamically generated array
through the running of a program in order to
record and reuse user input.
Use nested loops within a program to
repeat a command on the same array index
multiple times.
Perform variable arithmetic within an array
index to access items in an array by their
relative position.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Unit 5 on Code Studio

Vocabulary
Canvas - a user interface element to use in
HTML/JavaScript which acts as a digital
canvas, allowing the programmatic drawing
and manipulation of pixels, basic shapes,
figures and images.
Key Event - in JavaScript an event
triggered by pressing or releasing a key on
the keyboard. For example: "keyup" and
"keydown" are event types you can specify.
Use event.key - from the "event" parameter
of the onEvent callback function - to figure
out which key was pressed.

Introduced Code
setActiveCanvas

line

circle

https://studio.code.org/s/csp5
file://docs.code.org/applab/setActiveCanvas/
file://docs.code.org/applab/line/
file://docs.code.org/applab/circle/

setStrokeColor

setFillColor

clearCanvas

file://docs.code.org/applab/setStrokeColor/
file://docs.code.org/applab/setFillColor/
file://docs.code.org/applab/clearCanvas/

 Goal

This lesson requires a fair amount of programming and
combines most of the programming constructs students
have learned up to this point. Briefly let students know
the aim of the lesson and then move on to
programming the app.

Teaching Guide
Getting Started

Introduction to Activity
 Remarks

Today we are going to be building a drawing app in
App Lab. Along the way, we’ll be introduced to a
couple new ideas and concepts, but for the most
part, we will be combining old skills. At this point,
you all know most of the core concepts of
programming, and so as we move forward, we’ll
spend more time thinking about interesting ways to
combine them. With that in mind, let’s get into Code
Studio and start building our next app!

Activity

App Lab: Building an App - Canvas Painter
The images below show the progression of what students create throughout the lesson. It's worth just glancing over
them to get a sense of what you'll be seeing.

The final product is an app that lets you draw something by dragging the mouse around the screen. Afterward, you
can apply different effects to the drawing. The code saves all of the mouse coordinates in an array. The effects are
created by looping over all of the coordinates to effectively re-draw the image.

 Code Studio levels

Unit 5 Lesson 17 Introduction Student Overview

Levels 2 3 4 5 6 7 8 9 10 11 12

 13 14 15 16 17 18 19 (click tabs to see student view)

CSPU5_U3 - Canvas - freePlay Student Overview

https://code.org/curriculum/docs/csp/CanvasandArraysinApps_1.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_2.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_3.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_4.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_6.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_7.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_8.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_10.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_11.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_12-1.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_13-1.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_14_15.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_14_15.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_16.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_17.png
https://code.org/curriculum/docs/csp/CanvasandArraysinApps_18.png

Wrap-up

Share any additional features added to your app.
Goal: If students have had time to brainstorm or create additional features in their drawing apps, give them an
opportunity to share. Brainstorm other ways that this stored data could be processed, and the types of effects that
could be produced as a result. Some students may wish to extend this project on the Practice Create Performance
Task they will complete in the next lesson.

Brainstorm other effects that could be created.
Prompt:

"We’ve seen a few ways to process our array of events over the course of this lesson, but there are
many other effects we could produce. How else could we use the information we stored in our
array? What other effects do you think we could make?"

Discuss:

Either in groups or as a class, students should share the ideas they brainstormed. Ask students to describe how they
would actually process the array to develop the effects, ideally by referencing specific the programming constructs
they would need.

 Remarks

Processing lists of information is a very powerful ability. We’ve just brainstormed many different ways we could
process lists of points in a drawing app, but those same skills could be used to process lists of transactions, images,
messages sent through an app, or anything else that is stored in a list. Keep an eye out for other instances where
we can use list processing to create new features in your programs.

Standards Alignment
Computer Science Principles

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

1.3 - Computing can extend traditional forms of human expression and experience.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.3 - Programming is facilitated by appropriate abstractions.

5.4 - Programs are developed, maintained, and used by people for different purposes.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

UNIT

5
Ch. 1 1 2 3 4 5 6 7 8 9 10 Ch. 2 11

12 13 14 15 16 17 18

Lesson 18: Practice PT - Create Your
Own App
Overview
Note - We recommend you skip this lesson. It has not
been updated to match the 2018 Create PT Scoring
Guidelines and its contents are now covered in the AP
Create PT Prep Unit.

This lesson has been marked for deprecation. Never fear,
many of the original contents (including an updated
version of the Grumpy Cat exemplar) are now included in
the AP Create PT Prep unit. Since some contents of this
lesson may already have been used by students to create
projects it will not be removed during the 2017-2018
school year.

For any question about this please write in to
support@code.org.

Best, CSP Curriculum Team

To conclude their introduction to programming, students will design
an app based off of one they have previously worked on in the
programming unit. Students will choose the kinds of improvements
they wish to make to a past project in order to show their ability to
make abstractions and implement complex algorithms. The project
concludes with reflection questions similar to those students will
see on the AP® Create Performance Task. Students can either
complete the project individually or with a partner. Every student
will need a collaborative partner with whom they will give and
receive feedback.

Note: This is NOT the official AP Performance Task that will be
submitted as part of the Advanced Placement exam; it is a practice
activity intended to prepare students for some portions of their
individual performance at a later time.

Purpose
A skill that programmers must develop is the ability to plan and
execute a project from idea all the way through shipping of a
product. Some of the best apps are new ideas brought on by the
past work of a programmer themselves or other programmers. In
order to execute these new ideas programmers must identify the
programming structures needed to implement their idea and create
a project plan. Often there are deadlines on projects which require
programmers to make choices about the top features which need

Objectives
Students will be able to:

Complete reflection questions in a format
similar to those on the AP performance
tasks.
Collaborate to give and receive feedback on
program implementation to improve
program functionality.
Update existing code to add new
functionality to a program.
Create a video demonstrating the
functionality of a program.

Links
Heads Up! Please make a copy
of any documents you plan to
share with students.

For the Students

Practice PT Overview and Rubric -
Improve Your App

Practice PT Planning Guide - Improve
Your App

Unit 5 on Code Studio

Make a Copy

Make a Copy

https://docs.google.com/document/d/1twNRho-TKg39u1B6qz4AbJy4A6bHLJ4U1tByCFpM0cE/edit?usp=sharing
https://docs.google.com/document/d/1qwIHWF0mLgU2MiCeXahhv6s4rLmPXXKSryyYUkYHA2A/edit
https://studio.code.org/s/csp5

to be in a release of a new product. Finally, programmers must be
able to express to others the work they have done to create their
app.

AP® is a trademark registered and/or owned by the
College Board, which was not involved in the production
of, and does not endorse, this curriculum.

Agenda
Getting Started

Brainstorm: Programming Projects and Concepts So
Far

Activity

Review Code Studio Levels
Students identify target App and major components
that must be programmed.
Students individually program major components.
Work with classmates to give and receive
feedback.
Students complete project reflection questions and
create video.

Wrap-up

Submit and potentially present submissions.

Extended Learning
Assessment

 Teaching Tip

Here is a pretty extensive list of the things students
should come up with.

Programming
Projects
(apps)

Programming
Concepts

Digital Scene
Chaser Game
Multi-screen

App
Clicker Game
Mad Libs
Secret Number
Dice Game
Digital Assistant
Coin Flipping

Simulation
Word/Image

Scroller
Drawing App

Turtle Commands
Functions

Functions with Return
Values

Parameters
Looping

While
For

Random Numbers
Commenting
Debugging

Debug Console
Debug Commands
Console.log

Events
UI Elements

Buttons, Text Labels,
Dropdowns, Images,
Screens, Sounds, etc.
Prompt and
PromptNum

Variables
Conditionals (If, Else if,
Else)

Boolean Expressions
Boolean Operators
(&&,

Teaching Guide
Getting Started

Brainstorm: Programming Projects and Concepts So Far
Goal: Recall the programming projects, both large
and small, done in the unit. Review how they can be
used to frame the coming project as a practice for the
Create Performance Task.

 Remarks

For the project we are beginning today, you are
going to create a project of your choice built on past
work. Let’s make a list of all the past projects you
have worked on and the programming concepts you
have learned.

Brainstorm: Divide a piece of paper in half the long
way. On the left side of the piece of paper, list all the
programming projects you have done so far in this
unit. On the right side of the piece of paper, list all the
programming concepts you have learned so far.

Share Out: Have students share what they wrote and
compile a class list of programming projects and
programming concepts. Congratulate students on
coming this far! That’s a lot of things they have
learned!

Activity

Review Code Studio Levels
There is not much here. A student introduction, and
place for them to create and submit their project.

 Code Studio levels

Lesson Vocabulary & Resources 1 (click tabs to see student view)

Practice Performance Task: Create 2 (click tabs to see student view)

 Teaching Tip

Complete Project Planning Guide: Students should
use the Practice PT Planning Guide - Improve
Your App to develop an overview description of their
target app. The first thing students should do as part of
planning is to...

Read Requirements: Read through the guidelines of
the project together and address any high-level
questions about the aims of the project. Students will
have a chance to review the requirements once they
start planning.

Assign Collaborative Partners: On the real Create
Performance Task, teachers are not supposed to give
much help to students. Instead students are supposed
to work with a collaborative partner. Assign each
student a specific person as her collaborative partner.

Note: Students can work with a partner to create an
app together. They should probably still consult with
someone outside of the partnership who does not know
the details of their project. This will help with the
feedback process.

 Teaching Tip

If students are having difficulty developing their project
plan, encourage them to talk with their collaboration
partner. Develop the expectation that prior to asking you
for help, students will have consulted one another.

 Program: Students should work individually to
program their app or portion of their app. While they are
responsible for writing their own code for the project,
they may still consult with the other members of their
class, especially their collaborative partner.

Students identify target App and major components that must be
programmed.
 Remarks

Now that we’ve jogged your memory...for our final project of the unit you will use one of the projects we’ve done
already as a point of inspiration to make something new. You may build on and add features to an app you wrote
before. You may also write something completely new that you are inspired to create.

Distribute: Practice PT Planning Guide -
Improve Your App

This planning guide should help students think about
how to plan and execute the project. The planning
guide contains a link to Practice PT Planning Guide
- Improve Your App for students as well. Students
should begin reviewing the project guidelines and
getting down to work. This project will take some time,
as it has new elements, such as a video, and it asks
students to create PDF documents of their write-ups.

A proposed schedule of the steps of this project is
included below, as well as more thorough
explanations of how to conduct the various stages.

Day 1

Review the project guidelines and the rubric.
Assign students to collaborative partners.
Have students brainstorm and complete App
Design Guide guide in Practice PT Planning Guide -
Improve Your App.

Students individually program
major components.
Day 2

Students begin work on programming projects.
Add at least one or two new features/components to
the app.

Work with classmates to give
and receive feedback.
Day 3

Students give and receive feedback with collaborative partner.
Students pick two pieces of feedback to act on and improve in their program.
Continue working on program.

Day 4

Students finalize their first implementation of the program.
Students begin their reflection questions and/or video.

Students complete project reflection questions and create video.
Day 5

Students complete their reflection questions and/or video.
Students submit their projects.

https://docs.google.com/document/d/1qwIHWF0mLgU2MiCeXahhv6s4rLmPXXKSryyYUkYHA2A/edit
https://docs.google.com/document/d/1qwIHWF0mLgU2MiCeXahhv6s4rLmPXXKSryyYUkYHA2A/edit
https://docs.google.com/document/d/1qwIHWF0mLgU2MiCeXahhv6s4rLmPXXKSryyYUkYHA2A/edit

 Teaching Tip

If students work in partners, they will need some way to
combine their code. Possible solutions are:

emailing links to their individual code *creating a
shared document / spreadsheet into which students
can paste links Groups only need to create one
program which contains all of their work. Individual
group members can then “Remix” this project or just
copy the code by using a link.

Peer Consultation: After students have finished
implementing a draft of their program, they should meet
with their collaborative partner, present their work so
far, and provide feedback regarding their progress.
They should complete the Feedback Guide. Other
potential questions to address: Is there anything
that’s particularly clever or gives you ideas for
your own project? Do you agree with the choices
your partner has made? Is there anything missing?

 Teaching Tip

Reflection Questions: Students will complete the
reflection questions included in Practice PT Planning
Guide - Improve Your App.

Video Creation: Students will create a video to
demonstrate the functionality of their program. The
video should not be longer than 1 minute. It does not
need sound.

Video Creation - Suggested Tools:

Many of the short program clips of programs running
throughout the curriculum were created using
LiceCap, which is an easy way to create gifs of
things happening on your computer -
http://www.cockos.com/licecap/
QuickTime - You can do a screen recording with
QuickTime as well. Can use QuickTime on Mac or
Windows.

Wrap-up

Submit and potentially present
submissions.
Self-assess: It can be a useful exercise to have
students briefly assess themselves using the rubric
they were provided at the beginning of the project. Ask
them to identify points where they could improve, and
remind them that this rubric is very similar in structure
to the one that will be used on the actual AP
Performance Tasks they will see later in the year.
Presentation (Optional): If time allows, students may
wish to have an opportunity to share their final apps
with one another. Consider options like creating a
“Digital Gallery” by posting all links to a shared
document.

Presentation (Optional): If time allows, students
may wish to have an opportunity to share their final
apps with one another. Consider options like creating a
“Digital Gallery” by posting all links to a shared
document.

Extended Learning

Locate the most recent Performance Task
Descriptions:

http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-principles-
performance-assessment.pdf
Locate the most recent Performance Task Rubrics: http://www.csprinciples.org/home/about-the-project

Assessment

Rubric: Use the provided rubric (in Practice PT Overview and Rubric - Improve Your App), or one of your own
creation, to assess students’ submissions.

https://docs.google.com/document/d/1qwIHWF0mLgU2MiCeXahhv6s4rLmPXXKSryyYUkYHA2A/edit
http://www.cockos.com/licecap/
http://media.collegeboard.com/digitalServices/pdf/ap/ap-computer-science-principles-performance-assessment.pdf
http://www.csprinciples.org/home/about-the-project
https://docs.google.com/document/d/1twNRho-TKg39u1B6qz4AbJy4A6bHLJ4U1tByCFpM0cE/edit?usp=sharing

 Teaching Tip

Adding Code Segments To PDF: In order to add
pictures of segments of their code, students may need
to take screenshots. Below are the shortcuts for a
couple different platforms for taking screenshots (a
picture of part or all of the computer screen).

Adding Shapes: One way you can add shapes to a
picture is by using the drawing feature of Google Docs.
Click Insert -> Drawing. Then add the image you want

to put the shape on by clicking on . Then pick the

shape you need from the dropdown .

Many PDF viewers also have the ability to add simple
shapes to a document. If neither of those options
seems to be working for students, they can always print
a copy, draw on the shapes, and scan it back in.

Project Submission: Students will submit their
projects, but they will need instructions on how to
submit them as there are several different files. For the
real performance task, all documents will have to be
combined into a single PDF file. They need to hand in:

A copy of their Planning Document
A copy of their Feedback Guide where they got
feedback
A separate PDF with their write-up
A video demo of their code
A copy of their code. (Note: Although they can
submit their code directly through Code Studio, they
will not be able to put the ovals and rectangles
required for the Performance Task. Students should
practice copying their code and adding those shape
components to a PDF.)

Final Submissions: Make a determination of how best
students can submit final work. On the actual
Performance Tasks, students will be required to submit
all of their documents in a single PDF document, but it

 Teaching Tip

Feel free to exclude the wrap-up activities in the interest
of time. Neither is an essential portion of the
Performance Tasks and they are included only to
provide a more natural conclusion to the project within
your class.

To make grading easier, you might have students
anonymously score projects according the rubric. Both
the scorer and score should be anonymous.

https://code.org/curriculum/docs/csp/PracticePTImproveYourApp1.png
https://code.org/curriculum/docs/csp/PracticePTImproveYourApp2.png
https://code.org/curriculum/docs/csp/PracticePTImproveYourApp3.png

Standards Alignment
Computer Science Principles

1.1 - Creative development can be an essential process for creating computational artifacts.

1.2 - Computing enables people to use creative development processes to create computational artifacts for creative expression or to

solve a problem.

2.2 - Multiple levels of abstraction are used to write programs or create other computational artifacts

4.1 - Algorithms are precise sequences of instructions for processes that can be executed by a computer and are implemented using

programming languages.

5.1 - Programs can be developed for creative expression, to satisfy personal curiosity, to create new knowledge, or to solve problems

(to help people, organizations, or society).

5.4 - Programs are developed, maintained, and used by people for different purposes.

5.5 - Programming uses mathematical and logical concepts.

If you are interested in licensing Code.org materials for commercial purposes, contact us.

http://creativecommons.org/
file://code.org/contact

	Unit 5 - Building Apps
	Chapter 1: Event-Driven Programming
	Big Questions
	Enduring Understandings
	Week 1
	Lesson 1: Introduction to Event-Driven Programming
	Lesson 2: Multi-Screen Apps
	Lesson 3: Building an App: Multi-Screen App

	Week 2
	Lesson 4: Controlling Memory with Variables
	Lesson 5: Building an App: Clicker Game
	Lesson 6: User Input and Strings

	Week 3
	Lesson 7: If-statements unplugged
	Lesson 8: Boolean Expressions and "if" Statements

	Week 4
	Lesson 9: "if-else-if" and Conditional Logic
	Lesson 10: Building an App: Color Sleuth
	Programming | Conditionals | App Lab

	Chapter Commentary
	Unit 5 Chapter 1 - What’s the story?
	Ready for the Create PT?

	Our Approach to the Content

	Chapter 2: Programming with Data Structures
	Big Questions
	Enduring Understandings
	Week 5
	Lesson 11: While Loops
	Lesson 12: Loops and Simulations
	Lesson 13: Introduction to Arrays

	Week 6
	Lesson 14: Building an App: Image Scroller
	Lesson 15: Processing Arrays
	Unplugged | App Lab

	Lesson 16: Functions with Return Values

	Week 7
	Lesson 17: Building an App: Canvas Painter
	Lesson 18: Practice PT - Create Your Own App

	Chapter Commentary
	Unit 5 Chapter 2 - What’s the story?
	Our Approach to the Content

	Lesson 1: Introduction to Event-Driven Programming
	Overview
	Objectives
	Students will be able to:

	Links
	Purpose
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started (10 Minutes)
	What events do familiar apps use to be interactive?

	Activity (45 Minutes)
	Code Studio levels
	Teaching Tips
	Teaching Tips
	Teaching Tip

	Wrap-up (10 Minutes)
	Share chaser games

	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 2: Multi-Screen Apps
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started
	Recall and Move on

	Activity
	Instructions for Getting Started and Setup
	Code Studio levels

	Wrap-up
	Share Chaser/Clicker games
	Reflection on debugging and error messages

	Extended Learning
	Assessment
	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 3: Building an App: Multi-Screen App
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Agenda

	Teaching Guide
	Getting Started
	Introduce the Multi-screen App mini project.

	Activity
	Complete the multi-screen app design worksheet and project
	Code Studio levels
	Student Instructions

	Unit 5: Lesson 3 - Make your own Multi-Screen App
	Background
	Vocabulary
	Lesson
	Resources
	Student Instructions

	Event-Driven Programming Recap
	Teaching Tip
	1. Mental Note: UI elements all function basically the same way
	2. There is a Pattern to Developing Event-Driven Programs in App Lab
	Click continue to see "Tips for Working on Your Own"
	Student Instructions

	Tips for working on your own
	Tip 1: Have a "coding buddy" and "thought partner"
	Teaching Tip

	Tip 2. Persistence Pays off
	Tip 3. Use online documentation - some new commands
	With those lessons learned...click continue to start making your own app!
	Student Instructions

	Multi Screen App
	NOTE: Bigger toolbox
	Requirements Reminder
	Suggested Project timeline
	Complete peer review.
	Wrap-up
	Incorporate peer feedback
	Create PT Prep
	Code Studio levels
	Student Instructions

	AP Practice - Create PT - Process
	Grade the Response
	Assessment
	Standards Alignment
	Computer Science Principles

	Lesson 4: Controlling Memory with Variables
	Overview
	Objectives
	Students will be able to:

	Purpose
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started
	Recall patterns in making event-driven apps.
	Motivate the need for variables in our programs to make them more useful.

	Activity
	App Lab: Controlling Memory with Variables
	Code Studio levels

	Wrap-up
	Foreshadow adding variables to apps.

	Extended Learning
	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 5: Building an App: Clicker Game
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started
	Recall basic mechanics and terminology of working with variables

	Activity
	App Lab: Building an App - Clicker Game
	Code Studio levels

	Wrap-up
	Peer Review of Clicker Games

	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)

	Lesson 6: User Input and Strings
	Overview
	Objectives
	Students will be able to:

	Links
	Purpose
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started
	Explore a Mad Libs app and plan your own

	Activity
	App Lab: User Input and Strings
	Code Studio levels

	Wrap-up
	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 7: If-statements unplugged
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teacher
	For the Students

	Vocabulary

	Teaching Guide
	Getting Started (5 mins)
	When v. If

	If-statements Unplugged (40 mins)
	Code Studio levels
	Student Instructions

	Unit 5: Lesson 7 - If Statements Unplugged
	Background
	Lesson
	Vocabulary
	Resources
	Student Instructions

	Big-Picture: If-statements
	Word Soup: If-statements, Conditionals, Selection
	Key Idea: If-statements are how programs adapt and respond to conditions on the ground.
	Practice with the AP Pseudocode
	Student Instructions

	A Worked Example
	"Will it crash?" Activity
	Wrap Up (20 mins)
	What was trickiest?
	Algorithms and Creativity
	Code Studio levels
	Student Instructions

	Algorithms - Solving Problems
	What is an algorithm?
	How to use this level

	Automating Physical Tasks
	Algorithms and Information Tasks
	Algorithms, Programming, and Computer Science
	Algorithms and Creativity
	Algorithms, Unit 5, and the AP Exam
	Standards Alignment
	Computer Science Principles

	Lesson 8: Boolean Expressions and "if" Statements
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Agenda
	Links
	For the Students

	Vocabulary
	Introduced Code

	Teaching Guide
	Getting Started
	When vs. If
	Optional: Flow Charts

	Activity
	App Lab: Boolean expressions and if-statements
	Code Studio levels

	Wrap-up
	Compare and Contrast - easy/hard
	Nested if statements

	Standards Alignment
	CSTA K-12 Computer Science Standards (2011)
	Computer Science Principles

	Lesson 9: "if-else-if" and Conditional Logic
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	Agenda
	For the Teacher
	For the Students

	Vocabulary
	Introduced Code

	Teaching Guide
	Getting Started
	Review nested and chained conditionals
	Compound Conditionals worksheet - page 1

	Activity
	Transition to Code Studio practice using && and ||
	Code Studio levels

	Wrap-up
	Review what makes logic tricky
	Create PT Prep
	Preview "Building an App: Color Sleuth"

	Extended Learning
	Standards Alignment
	Computer Science Principles

	Lesson 10: Building an App: Color Sleuth
	Programming | Conditionals | App Lab
	Overview
	Objectives
	Students will be able to:

	Links
	For the Students

	Purpose
	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Getting Started
	What are you worried about? Where to Start?

	Activity
	Transition to Code Studio
	Code Studio levels

	Teaching This Lesson
	Wrap Up (15-50 mins)
	Gallery Walk (Optional)
	Review the Epilogue
	Connections to the AP Create Performance Task
	Review if statements for assessment

	Standards Alignment
	Computer Science Principles

	Lesson 11: While Loops
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Teacher

	Agenda
	For the Students

	Vocabulary
	Introduced Code

	Teaching Guide
	Getting Started
	Following a looping flowchart

	Activity
	(Optional) Flowcharts with while Loops
	App Lab: while loops
	Code Studio levels

	Wrap-up
	while loops exit ticket

	Standards Alignment
	Computer Science Principles

	Lesson 12: Loops and Simulations
	Overview
	Objectives
	Students will be able to:

	Purpose
	Preparation
	Links
	For the Students

	Agenda
	Vocabulary

	Teaching Guide
	Getting Started
	Coin Flipping Experiment

	Activity
	App Lab: Loops and Simulations
	Code Studio levels

	Pause Point - Make a Hypothesis
	Wrap-up
	Reflection

	Extended Learning
	Standards Alignment
	Computer Science Principles

	Lesson 13: Introduction to Arrays
	Overview
	Objectives
	Students will be able to:

	Links
	Purpose
	For the Students

	Vocabulary
	Introduced Code
	Agenda

	Teaching Guide
	Getting Started
	Prompt: What makes lists useful in everyday life?
	Transition: Variables are a bad way to store lists.

	Activity
	App Lab: Introduction to Arrays
	Code Studio levels

	Wrap-up
	Reflection: When to use a variable and when to use an array

	Extended Learning
	Standards Alignment
	Computer Science Principles

	Lesson 14: Building an App: Image Scroller
	Overview
	Objectives
	Students will be able to:

	Vocabulary
	Purpose
	Introduced Code
	Agenda

	Teaching Guide
	Getting Started
	Refactoring and re-writing code

	Activity
	App Lab: Building an App - Image Scroller
	Code Studio levels
	Notes about this lesson

	Wrap-up
	Reflection: When to refactor

	Standards Alignment
	Computer Science Principles

	Lesson 15: Processing Arrays
	Unplugged | App Lab
	Overview
	Objectives
	Students will be able to:

	Preparation
	Purpose
	Links
	For the Students

	Agenda
	Vocabulary
	Introduced Code

	Teaching Guide
	Getting Started (15 minutes)
	Recall: Minimum Card Algorithm
	Teacher Reference: Min Card Sample Algorithms

	Activity (30 minutes)
	App Lab: Processing Arrays
	Code Studio levels

	Activity 2
	Unplugged Activity: Card Search Algorithm

	Wrap-up (10 minutes)
	Reflection: Processing sorted arrays and binary search

	Standards Alignment
	Computer Science Principles

	Lesson 16: Functions with Return Values
	Overview
	Objectives
	Students will be able to:

	Purpose
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started (20 minutes)
	Unplugged Activity: Return Values with Go Fish

	Activity (25 minutes)
	App Lab: Functions with Return Values
	Code Studio levels

	Wrap-up (5 minutes)
	Exit ticket: Function with Returns vs. Functions without Returns

	Standards Alignment
	Computer Science Principles

	Lesson 17: Building an App: Canvas Painter
	Overview
	Objectives
	Students will be able to:

	Purpose
	Links
	For the Students

	Vocabulary
	Agenda
	Introduced Code

	Teaching Guide
	Getting Started
	Introduction to Activity

	Activity
	App Lab: Building an App - Canvas Painter
	Code Studio levels

	Wrap-up
	Share any additional features added to your app.
	Brainstorm other effects that could be created.

	Standards Alignment
	Computer Science Principles

	Lesson 18: Practice PT - Create Your Own App
	Overview
	Objectives
	Note - We recommend you skip this lesson. It has not been updated to match the 2018 Create PT Scoring Guidelines and its contents are now covered in the AP Create PT Prep Unit.
	Students will be able to:

	Links
	For the Students

	Purpose
	Agenda

	Teaching Guide
	Getting Started
	Brainstorm: Programming Projects and Concepts So Far

	Activity
	Review Code Studio Levels
	Code Studio levels
	Students identify target App and major components that must be programmed.
	Students individually program major components.
	Work with classmates to give and receive feedback.
	Students complete project reflection questions and create video.

	Wrap-up
	Submit and potentially present submissions.

	Extended Learning
	Assessment
	Standards Alignment
	Computer Science Principles

